

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY

SERGARH-756060, BALASORE (ODISHA)
(Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: TH -3 FLUID MECHANICS

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Properties of Fluid	08	08
2	Fluid Pressure and its measurements	08	08
3	Hydrostatics	08	08
4	Kinematics of Flow	08	08
5	orifices, notches & weirs	08	08
6	Flow through pipe	10	10
7	Impact of jets	10	10
	TOTAL	60	60

Disciplin				
e:	Semester:			
MECHA	4TH	Name of the Teaching Faculty: Er.Ranjit Giri		
NICAL ENGG.				
Week	Class Day	Theory / Practical Topics		
1 st	1 st	1.1 Define fluid		
		1.2 Description of fluid properties like Density, Specific weight, specific gravity, specific		
	2 nd	volume and solve simple problems.		
	3 rd	1.2 Description of fluid properties like Density, Specific weight, specific gravity, specific		
		volume and solve simple problems.		
		1.2 Description of fluid properties like Density, Specific weight, specific gravity, specific		
		volume and solve simple problems.		
	1 st	1.3 Definitions and Units of Dynamic viscosity, kinematic viscosity, surface tension		
		Capillary phenomenon		
	2 nd	1.3 Definitions and Units of Dynamic viscosity, kinematic viscosity, surface tension		
2 nd		Capillary phenomenon		
	3 rd	1.3 Definitions and Units of Dynamic viscosity, kinematic viscosity, surface tension		
		Capillary phenomenon		
	4 th	2.1 Definitions and units of fluid pressure, pressure intensity and pressure head.		
	1 st	2.1 Definitions and units of fluid pressure, pressure intensity and pressure head.		
, rd	2 nd	2.2 Statement of Pascal's Law.		
3 rd	3 rd	2.3 Concept of atmospheric pressure, gauge pressure, vacuum pressure and absolute		
		pressure		
	4 th	2.3 Concept of atmospheric pressure, gauge pressure, vacuum pressure and absolute		
4 th		pressure		
4	1 st	2.4 Pressure measuring instruments Manometers (Simple and Differential)		
	2 nd	2.4.1 Bourdon tube pressure gauge(Simple Numerical)		
	3 rd	2.5 Solve simple problems on Manometer		
	4 th	2.5 Solve simple problems on Manometer		
	1 st	3.1 Definition of hydrostatic pressure		
	2 nd	3.2 Total pressure and centre of pressure on immersed bodies(Horizontal and Vertical		
5 th	3 rd	3.2 Total pressure and centre of pressure on immersed bodies(Horizontal and Vertical		
		Bodies)		
	4 th	3.3 Solve Simple problems.		
	1 st	3.3 Solve Simple problems.		
	2 nd	3.4 Archimedes 'principle, concept of buoyancy, meta center and meta centric height		
6 th		(Definition only)		
"	3 rd	3.4 Archimedes 'principle, concept of buoyancy, meta center and meta centric height		
		(Definition only)		
	4 th	3.5 Concept of floatation		
7 th	1 st	4.1 Types of fluid flow		
	2 nd	4.1 Types of fluid flow		
	3 rd	4.2 Continuity equation(Statement and proof for one dimensional flow)		
	4 th	4.2 Continuity equation(Statement and proof for one dimensional flow)		
	4			

o th		4.2 Damie 119 de 1 1	
8 th	1 st	4.3 Bernoulli's theorem(Statement and proof) Applications and limitations of Bernoulli's	
		theorem (Venturimeter, pitot tube)	
	2 nd	4.3 Bernoulli's theorem(Statement and proof) Applications and limitations of Bernoulli's	
		theorem (Venturimeter, pitot tube)	
	3 rd	4.4 Solve simple problems	
	4 th	4.4 Solve simple problems	
9 th	1 st	5.1 Define orifice	
	2 nd	5.2 Flow through orifice	
	3 rd	5.30rifices coefficient & the relation between the orifice coefficients	
	4 th	5.4 Classifications of notches & weirs	
10 th	1 st	5.5 Discharge over a rectangular notch or weir	
	2 nd	5.6 Discharge over a triangular notch or weir	
10	3 rd	5.7 Simple problems on above	
	4 th	5.7 Simple problems on above	
	1 st	6.1 Definition of pipe.	
11 th	2 nd	6.2 Loss of energy in pipes.	
11	3 rd	6.2 Loss of energy in pipes.	
	4 th	6.3 Head loss due to friction: Darcy's and Chezy's formula (Expression only)	
	1 st	6.3 Head loss due to friction: Darcy's and Chezy's formula (Expression only)	
12 th	2 nd	6.4 Solve Problems using Darcy's and Chezy's formula.	
	3 rd	6.4 Solve Problems using Darcy's and Chezy's formula.	
	4 th	6.4 Solve Problems using Darcy's and Chezy's formula.	
	1 st	6.5 Hydraulic gradient and total gradient line	
. – th	2 nd	6.5 Hydraulic gradient and total gradient line	
13 th	3 rd	7.1 Impact of jet on fixed and moving vertical flat plates	
	4 th	7.1 Impact of jet on fixed and moving vertical flat plates	
	1 st	7.1 Impact of jet on fixed and moving vertical flat plates	
14 th	2 nd	7.2 Derivation of work done on series of vanes and condition for maximum efficiency	
14	3 rd	7.2 Derivation of work done on series of vanes and condition for maximum efficiency	
	4 th	7.2 Derivation of work done on series of vanes and condition for maximum efficiency	
15 th	1 st	7.2 Derivation of work done on series of vanes and condition for maximum efficiency	
	2 nd	7.3 Impact of jet on moving curved vanes, illustration using velocity triangles, derivation of work done, efficiency.	
	3 rd	7.3 Impact of jet on moving curved vanes, illustration using velocity triangles, derivation of work done, efficiency.	
	4 th	7.3 Impact of jet on moving curved vanes, illustration using velocity triangles, derivation of work done, efficiency.	