NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** **SUBJECT: Th-2 (Analog Electronics and OP-AMP)** ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | SI.No. | Name of the chapter as per the Syllabus | No. of Periods as per the Syllabus | No. of periods actually needed | |--------|---|------------------------------------|--------------------------------| | 1 | P-N JUNCTION DIODE | 5 | 5 | | 2 | SPECIAL SEMICONDUCTOR DEVICES | 10 | 10 | | 3 | RECTIFIER CIRCUITS & FILTERS | 8 | 8 | | 4 | TRANSISTORS | 8 | 8 | | 5 | TRANSISTOR CIRCUITS | 7 | 7 | | 6 | TRANSISTOR AMPLIFIERS & OSCILLATORS | 8 | 8 | | 7 | FIELD EFFECT TRANSISTOR | 9 | 9 | | 8 | OPERATIONAL AMPLIFIERS | 5 | 5 | | | TOTAL | 60 | 60 | | Discipline:
ELECTRICAL
ENGG. | Semester:
4th | Name of the Teaching Faculty: Er. BIJAYA KUMAR BEHERA | |------------------------------------|------------------|---| | Week | Class Day | Theory / Practical Topics | | 1ST | 1 st | P-N JUNCTION DIODE: | | | 1** | P-N Junction Diode,Working of Diode | | | 2 nd | V-I characteristic of PN junction Diode. | | | 3 rd | DC load line | | | | Important terms such as Ideal Diode, Knee voltage | | | 4 th | Junctions break down | | | | Zener breakdown | | | | Avalanche breakdown | | | 1 st | P-N Diode clipping Circuit | | 2ND | 2 nd | P-N Diode clamping Circuit | | -:•5 | 3 rd | Thermistors, Sensors & barretters | | | 4 th | Thermistors, Sensors & barretters | | | 1 st | Zener Diode | | | 2 nd | Tunnel Diode | | 3RD | 3 rd | PIN Diode | | | 4 th | RECTIFIER CIRCUITS & FILTERS: | | | 4" | Classification of rectifiers | | | 1 st | Analysis of half wave, full wave centre tapped and Bridge rectifiers and calculate: | | | 2 nd | DC output current and voltage | | | 2 | RMS output current and voltage | | 4TH | 3 rd | Rectifier efficiency | | | | Ripple factor | | | | Regulation | | | 4 th | Transformer utilization factor | | | 4 | Peak inverse voltage | | | 1 st | Filters: | | | 1" | Shunt capacitor filter | | | 2 nd | Choke input filter | | 5TH | | π filter | | | 3 rd | TRANSISTORS: | | | 3 | Principle of Bipolar junction transistor | | | 4 th | Principle of Bipolar junction transistor | | | 1 st | Different modes of operation of transistor | | 6ТН | 2 nd | Current components in a transistor | | | 3 rd | Transistor as an amplifier | | | 4 th | CB Configuration | | | 1 | CE Configuration | |------|-----------------|--| | | 1 st | CC Configuration | | | | | | | 2 nd | TRANSISTOR CIRCUITS: | | 7TH | | Transistor biasing | | | 3 rd | Stabilization | | | 46 | Stabilization | | | 4 th | Stability factor | | | 1 st | Different method of Transistors Biasing | | 8ТН | 2 nd | Base resistor method | | | 3 rd | | | | | Collector to base bias | | | 4 th | Self bias or voltage divider method | | | . st | TRANSISTOR AMPLIFIERS & OSCILLATORS: | | | 1 st | Practical circuit of transistor amplifier | | | 2 nd | <u> </u> | | ОТИ | | DC load line and DC equivalent circuit | | 9TH | 3 rd | AC load line and AC equivalent circuit | | | | Calculation of gain | | | 4 th | Phase reversal | | | | H-parameters of transistors | | | 1 st | Simplified H-parameters of transistors | | | | Generalised approximate model | | | | Certefulised approximate model | | | 2 nd | | | | | Analysis of CB, CE, CC amplifier using generalised approximate model | | 10TH | 3 rd | Multi stage transistor amplifier | | | | R.C. coupled amplifier | | | | | | | 4 th | Transformer coupled amplifier | | | | Feed back in amplifier | | | | General theory of feed back | | | 1 st | Negative feedback circuit | | | | Advantage of negative feed back | | | 2 nd | Power amplifier and its classification | | | 2" | Difference between voltage amplifier and power amplifier | | | 3 rd | | | 11TH | | Transformer coupled class A power amplifier | | | | Class A push – pull amplifier | | | | Class B push – pull amplifier | | | 4 th | | | | | Oscillators | | | | Types of oscillators | | | | Essentials of transistor oscillator | | 12TH | 1 st | Principle of operation of tuned collector, Hartley, colpitt, phase shift, wein-bridge oscillator (no mathematical derivations) | |------|-----------------|--| | | 2 nd | FIELD EFFECT TRANSISTOR: | | | | Classification of FET | | | 3 rd | Advantages of FET over BJT | | | 4 th | Principle of operation of BJT | | | 1 st | FET parameters (no mathematical derivation) | | | | DC drain resistance | | | 2 nd | AC drain resistance | | 13TH | 3 rd | Biasing of FET | | | 4 th | OPERATIONAL AMPLIFIERS: General circuit simple of OP-AMP and IC – CA – 741 OP AMP | | 14TH | 1 st | Operational amplifier stages Equivalent circuit of operational amplifier | | | 2 nd | Open loop OP-AMP configuration OPAMP with fed back | | | 3 rd | Inverting OP-AMP Non inverting OP-AMP | | | 4 th | Voltage follower & buffer | | | 1 st | Differential amplifier | | | _ | Adder and summing amplifier | | | 2 nd | Sub tractor | | 15TH | 3 rd | Integrator | | | | Differentiator | | | 4 th | Comparator |