

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-3 (DIGITAL SIGNAL PROCESSING)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Introduction of Signals, Systems & Signal processing	10	10
2	DISCRETE TIME SIGNALS & SYSTEMS	14	14
3	THE Z-TRANSFORM & ITS APPLICATION TO THE ANALYSIS OF LTI SYSTEM.	14	14
4	DISCUSS FOURIER TRANSFORM: ITS APPLICATIONS PROPERTIES	12	12
5	FAST FOURIER TRANSFORM ALGORITHM & DIGITAL FILTERS	10	10
	TOTAL	60	60

Discipline: ELECTRICAL& ELECTRONICS ENGG.	Semester: 6TH	Name of the Teaching Faculty: Er. DHARMAPADA OJHA
Week	Class Day	Theory / Practical Topics

	1	,
	1 st	Introduction of Signals, Systems & Signal processing 1.1 Basics of Signals, Systems & Signal processing- basic element of a digital signal processing system -Compare the advantages of digital signal processing over analog signal processing.
	2 nd	Introduction of Signals, Systems & Signal processing 1.1 Basics of Signals, Systems & Signal processing- basic element of a digital signal processing system -Compare the advantages of digital signal processing over analog signal processing.
1 st	3 rd	1.2 Classify signals - Multi channel& Multi-dimensional signals-Continuous time verses Discrete -times SignalContinuous valued verses Discrete -valued signals.
	4 th	1.2 Classify signals - Multi channel& Multi-dimensional signals-Continuous time verses Discrete -times SignalContinuous valued verses Discrete -valued signals.
	5 th	TUTORIAL
	1 st	1.3 Concept of frequency in continuous time & discrete time signals- Continuous-time sinusoidal signals-Discrete-time sinusoidal signals- Harmonically related complex exponential.
	2 nd	1.3 Concept of frequency in continuous time & discrete time signals- Continuous-time sinusoidal signals-Discrete-time sinusoidal signals- Harmonically related complex exponential.
2 nd	3 rd	1.3 Concept of frequency in continuous time & discrete time signals- Continuous-time sinusoidal signals-Discrete-time sinusoidal signals- Harmonically related complex exponential.
	4 th	1.4 Analog to Digital & Digital to Analog conversion & explain the following. a. Sampling of Analog signal,
	5 th	TUTORIAL
	1 st	b. The sampling theorem. c. Quantization of continuous amplitude signals,

	2 nd	d. Coding of quantized sample. e. Digital to analog conversion. f. Analysis of digital systems signals vs. discrete time signals systems.
3 rd	3 rd	2.1 Concept of Discrete time signals. 2.1.1 Elementary Discrete time signals.
	4 th	2.1 Concept of Discrete time signals. 2.1.1 Elementary Discrete time signals.
	5 th	TUTORIAL
	1 st	2.1.2 Classification Discrete time signal. 2.1.3 Simple manipulation of discrete time signal.
	2 nd	2.2 Discrete time system. 2.2.1 Input-output of system.
4 th	3 rd	2.2.2 Block diagram of discrete- time systems
	4 th	2.2.3 Classify discrete time system. 2.2.4 Inter connection of discrete -time system.
	5 th	TUTORIAL
	1 st	2.3 Discrete time time-invariant system. 2.3.1 Different techniques for the Analysis of linear system.
	2 nd	2.3.2 Resolution of a discrete time signal in to impulse. 2.3.3 Response of LTI system to arbitrary inputs using convolution sum.
5 th	3 rd	2.3.4 Convolution & interconnection of LTI system - properties.
	4 th	2.3.5 Study systems with finite duration and infinite duration impulse response.
	5 th	TUTORIAL
	1 st	2.4 Discrete time system described by difference equation. 2.4.1 Recursive & non-recursive discrete time system.

	2 nd	2.4.2 Determine the impulse response of linear time invariant recursive system.
6 th	3 rd	2.4.2 Determine the impulse response of linear time invariant recursive system.
	4 th	2.4.3 Correlation of Discrete Time signals
	5 th	TUTORIAL
	1 st	THE Z-TRANSFORM & ITS APPLICATION TO THE ANALYSIS OF LTI SYSTEM. 3.1 Z-transform & its application to LTI system.
7 th	2 nd	3 THE Z-TRANSFORM & ITS APPLICATION TO THE ANALYSIS OF LTI SYSTEM. 3.1 Z-transform & its application to LTI system.
	3 rd	3.1.1 Direct Z-transform.
	4 th	3.1.2 Inverse Z-transform.
	5 th	TUTORIAL
	1 st	3.2 Various properties of Z-transform.
	2 nd	3.3 Rational Z-transform.
8 th	3 rd	3.3.1 Poles & zeros
	4 th	3.3.2 Pole location time domain behaviour for casual signals.
	5 th	TUTORIAL
	1 st	3.3.3 System function of a linear time invariant system.
	2 nd	3.4 Discuss inverse Z-transform. 3.4.1 Inverse Z-transform by partial fraction expansion

9 th	3 rd	3.4 Discuss inverse Z-transform. 3.4.1 Inverse Z-transform by partial fraction expansion
	4 th	3.4 Discuss inverse Z-transform. 3.4.1 Inverse Z-transform by partial fraction expansion
	5 th	TUTORIAL
	1 st	3.4.2 Inverse Z-transform by contour Integration
	2 nd	3.4.2 Inverse Z-transform by contour Integration
10 th	3 rd	4: DISCUSS FOURIER TRANSFORM: ITS APPLICATIONS PROPERTIES. 4.1 Concept of discrete Fourier transform.
	4 th	4.2 Frequency domain sampling and reconstruction of discrete time signals.
	5 th	TUTORIAL
	1 st	4.2 Frequency domain sampling and reconstruction of discrete time signals.
	2 nd	4.3 Discrete Time Fourier transformation(DTFT)
11 th	3 rd	4.3 Discrete Time Fourier transformation(DTFT)
	4 th	4.4 Discrete Fourier transformation (DFT).
	5 th	TUTORIAL

	1 st	4.5 Compute DFT as a linear transformation.
	2 nd	4.5 Compute DFT as a linear transformation.
12 th	3 rd	4.6 Relate DFT to other transforms.
	4 th	4.6 Relate DFT to other transforms.
	5 th	TUTORIAL
	1 st	4.7 Property of the DFT.
	2 nd	4.8 Multiplication of two DFT & circular convolution
13 th	3 rd	5 FAST FOURIER TRANSFORM ALGORITHM & DIGITAL FILTERS. 5.1 Compute DFT & FFT algorithm.
	4 th	5.2 Direct computation of DFT.
	5 th	TUTORIAL
	1 st	5.3 Divide and Conquer Approach to computation of DFT
	2 nd	5.4 Radix-2 algorithm. (Small Problems)
14 th	3 rd	5.5 Application of FFT algorithms
	4 th	5.5 Application of FFT algorithms
	5 th	TUTORIAL
	1 st	5.6 Introduction to digital filters.(FIR Filters)& General considerations
	2 nd	5.6 Introduction to digital filters.(FIR Filters)& General considerations

15 th	3 rd	5.7 Introduction to DSP architecture, familiarisation of different types of processor	
	4 th	5.7 Introduction to DSP architecture, familiarisation of different types of processor	
	5 th	TUTORIAL	