NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** **SUBJECT: Th-4 (ELECTRIAL MACHINE)** ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | Sl.No. | Name of the chapter as per the Syllabus | No. of
Periods
as per the
Syllabus | No. of
periods
actually
needed | |--------|---|---|---| | 1 | Electrical material | 4 | 4 | | 2 | DC generator | 10 | 10 | | 3 | DC motor | 8 | 8 | | 4 | Ac circuit | 8 | 8 | | 5 | Three phase supply | 4 | 4 | | 6 | Transformer | 8 | 8 | | 7 | Induction motor | 10 | 10 | | 8 | Single phase induction motor | 5 | 5 | | 9 | Alternator | 3 | 3 | | 10 | Tutorial | 15 | 15 | | | TOTAL | 75 | 75 | ## **LESSON PLAN** | Disciplina. | 1 | | | | |-----------------|-----------------|--|--|--| | Discipline: | | | | | | ELECTRICAL | | | | | | AND | Semester: | Name of the Teaching Faculty: Er. RANJAN KUMAR PADHI | | | | ELECTRONIC | 4th | | | | | ENGINEERIN | | | | | | Week | Class Day | Theory / Practical Topics | | | | VVEEK | Class Day | ELECTRICAL MATERIAL | | | | | 1 st | | | | | | | Properties & uses of different conducting material | | | | | | | | | | | 2 nd | Properties & use of various insulating materials used electrical | | | | 1 st | 4 | engineering | | | | _ | | Properties & use of various insulating materials used electrical | | | | | 3 rd | engineering | | | | | | g g | | | | | 4 th | Types of Magnetic materials & their uses | | | | | 5 th | Class Test | | | | | 1 st | DC GENERATOR: | | | | | 1 | Basic working principle | | | | | - nd | | | | | 2 nd | 2 nd | constructional feature of DC Generator | | | | | 3 rd | constructional feature of DC Generator | | | | | 4 th | Classification of DC generator with voltage equation | | | | | 5 th | Class Test | | | | | 1 st | Classification of DC generator with voltage equation | | | | | 2 nd | Derivation of EMF equation & simple problems | | | | 3 rd | 3 rd | Derivation of EMF equation & simple problems | | | | | 4 th | Applications of DC generators | | | | | 5 th | Class Test | | | | | 1 st | Parallel operation of DC generators | | | | | 2 nd | Parallel operation of DC generators | | | | 4 th | 3 rd | DC MOTOR | | | | | | Working Principle of a DC motor | | | | | 4 th | · | | | | | | Concept of development of torque & back EMF in DC motor | | | | | 5 th | Class Test | | | | | <u> </u> | Class 1Cst | | | | | _ st | | | | | | 1 st | Concept of development of torque & back EMF in DC motor. | | | | | | (simple problems) | | | | ī | | | |------------------------|-----------------|--| | 5 th | 2 nd | Derive equation relating to back EMF, Current, Speed and Torque equation | | 5 | 3 rd | Classification of DC motors & their characteristics Application of DC MOTORS | | | 4 th | State & explain three point &four point stator of DC motors | | | 5 th | Class Test | | | 1 st | Speed control of DC motor by field control and armature voltage control method | | | 2 nd | Explain power stages of DC motor & derive Efficiency of a DC motor. | | 6 th | 3 rd | AC CIRCUITS State Mathematical representation of phasors, | | | | significant of operator "J". | | | 4 th | Addition, Subtraction, Multiplication and Division of phasor quantities | | | 5 th | Class Test | | | 1 st | Explain AC series circuits containing resistance, capacitances, Concept of active, reactive and apparent power and Q-factor of series circuits. (Solve related problems) | | | 2 nd | Explain AC series circuits containing resistance, capacitances, Concept of active, reactive and apparent power and Q-factor of series circuits. (Solve related problems) | | 7 th | 3 rd | Explain AC series circuits containing resistance, capacitances, Concept of active, reactive and apparent power and Q-factor of series circuits. (Solve related problems) | | | 4 th | Explain AC series circuits containing resistance, capacitances, | | |------------------------|-----------------|---|--| | | | Concept of active, reactive and apparent power and Q-factor | | | | th | of series circuits. (Solve related problems) | | | | 5 th | Class Test | | | | 1 st | Find the relation of AC Parallel circuits containing Resistances, Inductance and Capacitances Q-factor of parallel circuits | | | 8 th | 2 nd | Find the relation of AC Parallel circuits containing Resistances, Inductance and Capacitances Q-factor of parallel circuits | | | | 3 rd | THREE PHASE SUPPLY: Star and Delta circuit | | | | 4 th | Star and Delta circuit | | | | 5 th | Class Test | | | | 1 st | Line and Phase relationship | | | 9 th | 2 nd | Power equation with numerical problems | | | | 3 rd | TRANSFORMER State construction & working principle of transformer | | | | 4 th | Derive of EMF equation of transformer, voltage transformation ratio. | | | | 5 th | Class Test | | | 10 th | 1 st | Discuss operation of transformer on no-load with phasor diagram | | | | 2 nd | Operation of transformer on load condition in secondary with phasor diagram for different load. | | | | 3 rd | Operation of transformer on load condition in secondary with phasor diagram for different load. | | | | 4 th | Types of losses in Single Phase (1-ø) Transformer. | | | | | | | | | 5 th | Class Test | | |------------------|------------------------|---|--| | | 1 st | | | | | | Open circuit & short-circuit test (simple problems). | | | | 2 nd | Parallel operation of Transformer | | | | | INDUCTION MOTOR: | | | 11 th | 3 rd | Constructional feature and types of three-phase | | | | | induction motor. | | | | 4 th | Principle of development of rotating magnetic field in the | | | | | stator. | | | | 5 th | Class Test | | | | 1 st | | | | | | Working principle of three phase induction motor. | | | | 2 nd | | | | | | Working principle of three phase induction motor. | | | 12 th | 3 rd | | | | | _ | Slip speed and slip of induction motor. | | | | 4 th | Establish relation between torque, rotor current and power | | | | <u></u> | factor | | | | 5 th | Class Test | | | | 1 st | Establish relation between torque, rotor current and power | | | | | factor | | | | l nd | | | | | 2 nd | Explain starting of an induction motor by using DOL and Star- | | | 13 th | | Delta stator. | | | | | | | | | | Explain starting of an induction motor by using DOL and Star- | | | | ⊿ th | Delta stator. | | | | 5 th | Industrial use of induction motor | | | | 5*** | Class Test | | | | 1 st | | | | | | CINICLE DUACE INDUCTION MOTOR. | | | | | SINGLE PHASE INDUCTION MOTOR: | | | | | Explain construction features and principle of operation | | | | | of capacitor type and shaded pole type of single-phase | | | I | | induction motor. | | | 14 th | 2 nd | Explain construction features and principle of operation of capacitor type and shaded pole type of single-phase induction motor. | |------------------|-----------------|--| | | 3 rd | Explain construction features and principle of operation of capacitor type and shaded pole type of single-phase induction motor. | | | 4 th | Explain construction & operation of AC series motor. | | | 5 th | Class Test | | | 1 st | Explain construction & operation of AC series motor. | | | 2 nd | ALTERNATOR Concept of alternator & its application. | | 15 th | 3 rd | Concept of alternator & its application. | | | 4 th | Concept of alternator & its application. | | | 5 th | Class Test | Sign.Of Faculty Sign. Of HOD