

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-2 (CIRCUIT & NETWORK THEORY)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Magnetic Circuits	7	7
2	Coupled Circuits	5	7
3	Circuit Elements And Analysis	6	10
4	Network Theorems	8	11
5	Ac Circuit And Resonance	8	10
6	Poly-phase Circuit	6	6
7	Transients	6	6
8	Two-Port Network	8	11
9	Filters	6	7
	Total Period:	60	75

Discipline: ELECTRICAL& ELECTRONICS ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er.DHARMAPADA OJHA
Week	Class Day	Theory / Practical Topics
	1 st	MAGNETIC CIRCUITS 1 . 1 Introduction
	2 nd	1 . 2 Magnetizing force, Intensity, MMF, flux and their relations
1 st	3 rd	1 . 3 Permeability, reluctance and permeance
	4 th	1 . 4 Analogy between electric and Magnetic Circuits 1 . 5 B-H Curve
	5 th	1 . 6 Series & parallel magnetic circuit. 1 . 7 Hysteresis loop
	1 st	TUTORIAL CLASS
	2 nd	COUPLED CIRCUITS: 2 . 1 Self Inductance and Mutual Inductance
2 nd	3 rd	2 . 2 Conductively coupled circuit and mutual impedance
	4 th	2 . 3 Dot convention
	5 th	2 . 4 Coefficient of coupling
	1 st	2 . 5 Series and parallel connection of coupled inductors.
	2 nd	2 . 6 Solve numerical problems
3 rd	3 rd	TUTORIAL CLASS

1		
		CIRCUIT ELEMENTS AND ANALYSIS:
	4 th	3 . 1 Active, Passive, Unilateral & bilateral, Linear & Non linear elements
	5 th	3 . 2 Mesh Analysis, Mesh Equations by inspection
	1 st	3 . 3 Super mesh Analysis
	2 nd	3 . 4 Nodal Analysis, Nodal Equations by inspection
4 th	3 rd	3 . 4 Nodal Analysis, Nodal Equations by inspection
	4 th	3 . 5 Super node Analysis
	5 th	3 . 6 Source Transformation Technique
	1 st	3 . 7 Solve numerical problems (With Independent Sources Only)
	2 nd	3 . 7 Solve numerical problems (With Independent Sources Only)
5 th	3 rd	TUTORIAL CLASS
	4 th	NETWORK THEOREMS: 4.1 Star to delta and delta to star transformation
	5 th	4.2 Super position Theorem
	1 st	4.2 Super position Theorem
	2 nd	4.3 Thevenin's Theorem
6 th	3 rd	4.3 Thevenin's Theorem

		4.4 Norton's Theorem
	4 th	4.4 Notion 3 Medicin
	5 th	4.5 Maximum power Transfer Theorem.
	1 st	4.5 Maximum power Transfer Theorem.
	2 nd	4.6 Solve numerical problems (With Independent Sources Only)
7 th	3 rd	4.6 Solve numerical problems (With Independent Sources Only)
	4 th	TUTORIAL CLASS
	5 th	AC CIRCUIT AND RESONANCE: 5.1 A.C. through R-L, R-C & R-L-C Circuit
	1 st	5.2 Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by complex algebra method.
	2 nd	5.2 Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by complex algebra method.
8 th	3 rd	5.3 Solution of problems of A.C. through R-L, R-C & R-L-C parallel & Composite Circuits
	4 th	5.4 Power factor & power triangle.
	5 th	5.5 Deduce expression for active, reactive, apparent power.
	1 st	5.6 Derive the resonant frequency of series resonance and parallel resonance circuit
	2 nd	5.7 Define Bandwidth, Selectivity & Q-factor in series circuit.
9 th	3 rd	5.8 Solve numerical problems

1		
	4 th	TUTORIAL CLASS
	5 th	POLYPHASE CIRCUIT 6.1 Concept of poly-phase system and phase sequence
	1 st	6.2 Relation between phase and line quantities in star & delta connectio
	2 nd	6.3 Power equation in 3-phase balanced circuit.
10 th	3 rd	6.4 Solve numerical problems
	4 th	6.5 Measurement of 3-phase power by two wattmeter method.
	5 th	6.6 Solve numerical problems.
	1 st	TUTORIAL CLASS
	2 nd	TRANSIENTS: 7.1 Steady state & transient state response.
11 th	3 rd	7.2 Response to R-L, R-C & RLC circuit under DC condition.
	4 th	7.2 Response to R-L, R-C & RLC circuit under DC condition.
	5 th	7.3 Solve numerical problems
	1 st	7.3 Solve numerical problems
	2 nd	TUTORIAL CLASS
12 th	3 rd	TWO-PORT NETWORK: 8.1 Open circuit impedance (z) parameters

]		9.2 Chart circuit admittance (v) narameters
	₄ th	8.2 Short circuit admittance (y) parameters
	4	
		8.3 Transmission (ABCD) parameters
	5 th	Contraction (1965) parameters
		8.4 Hybrid (h) parameters.
	1 st	
		8.5 Inter relationships of different parameters.
	2 nd	
a a th	3 rd	8.5 Inter relationships of different parameters.
13 th	3	
		8.6 T and π representation
	4 th	and respectitation
	7	
		8.6 T and π representation
	5 th	
		8.7 Solve numerical problems
	1 st	
		9.7 Calus numarical problems
	2 nd	8.7 Solve numerical problems
	2	
14 th	3 rd	TUTORIAL CLASS
		FILTERS:
	4 th	9.1 Define filter
		9.2 Classification of pass Band, stop Band and cut-off frequency.
	416	9.3 Classification of filters.
	5 th	9.4 Constant – K low pass filter
		O.F. Counstant - K. high many filters
	1 st	9.5 Constant – K high pass filter.
	1	
		9.6 Constant – K Band pass filter.
	2 nd	
	_	
		9.7 Constant – K Band elimination filter.
15 th	3 rd	

	4 th	9.8 Solve Numerical problems
	5 th	TUTORIAL CLASS