NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** **SUBJECT: Th-2 (STRUCTURAL DESIGN-II)** ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | SI.No. | Name of the chapter as per the Syllabus | No. of
Periods
as per the
Syllabus | No. of
periods
actually
needed | |--------|---|---|---| | 1 | Introduction: | 5 | 5 | | 2 | Structural Steel Fasteners and Connections. | 10 | 10 | | 3 | Design of Steel tension Members | 10 | 10 | | 4 | Design of Steel Compression members. | 10 | 10 | | 5 | Design of Steel beams: | 10 | 10 | | 6 | Design of Tubular Steel Structures | 6 | 6 | | 7 | Design of Masonry Structures | 9 | 9 | | | Total Period: | 60 | 60 | | Discipline:
Civil
ENGINEERING | Semester:
5th | Name of the Teaching Faculty: Er. Biswajit Behera | | |-------------------------------------|------------------|--|--| | Week | Class Day | Theory / Practical Topics | | | 1 st | 1 st | 1.1 Common steel structures, Advantages & disadvantages of steel structures. | | | | 2 nd | 1.2 Types of steel, properties of structural steel.1.3 Rolled steel sections, special considerations in steel design. | | | | 3 rd | 1.4 Loads and load combinations.1.5 Structural analysis and design philosophy | | | | 4 th | 1.4 Loads and load combinations.1.5 Structural analysis and design philosophy | | | 2 nd | 1 st | 1.6 Brief review of Principles of Limit State design. | | | | 2 nd | 2.1 Bolted Connections2.1.1 Classification of bolts, advantages and disadvantages of bolted connections. | | | | 3 rd | 2.1.2 Different terminology, spacing and edge distance of bolt holes. | | | | 4 th | 2.1.3 Types of bolted connections.2.1.4 Types of action of fasteners, assumptions and principles of design. | | | 3 rd | 1 st | 2.1.3 Types of bolted connections.2.1.4 Types of action of fasteners, assumptions and principles of design. | | | | 2 nd | 2.1.5 Strength of plates in a joint, strength of bearing type bolts (shear capacity& bearing capacity), reduction factors, and shear capacity of HSFG bolts. | | | | 3 rd | 2.1.6 Analysis & design of Joints using bearing type and HSFG bolts (except eccentric load and prying forces) | | | | 4 th | 2.1.7 Efficiency of a joint. 2.2 Welded Connections: | | | | 1 st | 2.2.1 Advantages and Disadvantages of welded connection 2.2.2 Types of welded joints and specifications for welding | | | 4 th | 2 nd | 2.2.3 Design stresses in welds. 2.2.4 Strength of welded joints | | | | 3 rd | 2.2.3 Design stresses in welds. 2.2.4 Strength of welded joints | |------------------------|-----------------|---| | | 4 th | 3.1 Common shapes of tension members. | | 5 th | 1 st | 3.1 Common shapes of tension members. | | | 2 nd | 3.2 Maximum values of effective slenderness ratio. | | | 3 rd | 3.4 Analysis and Design of tension members.(Considering strength only and concept of block shear failure.) | | | 4 th | 3.4 Analysis and Design of tension members.(Considering strength only and concept of block shear failure.) | | 6 th | 1 st | 3.4 Analysis and Design of tension members.(Considering strength only and concept of block shear failure.) | | | 2 nd | 3.4 Analysis and Design of tension members.(Considering strength only and concept of block shear failure.) | | | 3 rd | 3.4 Analysis and Design of tension members.(Considering strength only and concept of block shear failure.) | | | 4 th | Revision | | 7 th | 1 st | Revision | | | 2 nd | 4.1 Common shapes of compression members. | | | 3 rd | 4.2 Buckling class of cross sections, slenderness ratio | | | 4 th | 4.2 Buckling class of cross sections, slenderness ratio | | | 1 st | 4.3 Design compressive stress and strength of compression members. | | 8 th | 2 nd | 4.3 Design compressive stress and strength of compression members. | |-------------------------|-----------------|--| | 8 | 3 rd | 4.4 Analysis and Design of compression members (axial load only). | | | 4 th | 4.4 Analysis and Design of compression members (axial load only). | | 9 th | 1 st | 4.4 Analysis and Design of compression members (axial load only). | | | 2 nd | Revision | | | 3 rd | Revision | | | 4 th | 5.1 Common cross sections and their classification. | | 10 th | 1 st | 5.1 Common cross sections and their classification. | | | 2 nd | 5.2 Deflection limits, web buckling and web crippling. | | | 3 rd | 5.2 Deflection limits, web buckling and web crippling. | | | 4 th | 5.2 Deflection limits, web buckling and web crippling. | | 11 th | 1 st | 5.3 Design of laterally supported beams against bending and shear. | | | 2 nd | 5.3 Design of laterally supported beams against bending and shear. | | | 3 rd | 5.3 Design of laterally supported beams against bending and shear. | | | 4 th | Revision | | | 1 | T | |-------------------------|-----------------|--| | 12 th | 1 st | Revision | | | 2 nd | 6.1 Round Tubular Sections, Permissible Stresses | | | 3 rd | 6.1 Round Tubular Sections, Permissible Stresses | | | 4 th | 6.2 Tubular Compression & Tension Members | | 13 th | 1 st | 6.2 Tubular Compression & Tension Members | | | 2 nd | 6.3 Joints in Tubular trusses | | | 3 rd | 6.3 Joints in Tubular trusses | | | 4 th | 6.3 Joints in Tubular trusses | | 14 th | 1 st | Revision | | | 2 nd | Revision | | | 3 rd | 7.1 Design considerations for Masonry walls & Columns, Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness. | | | 4 th | 7.1 Design considerations for Masonry walls & Columns, Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness. | | 15 th | 1 st | 7.1 Design considerations for Masonry walls & Columns, Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness. | | | 2 nd | 7.1 Design considerations for Masonry walls & Columns, Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness. | | | 3 rd | 7.1 Design considerations for Masonry walls & Columns, Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness. | | | 4 th | 7.1 Design considerations for Masonry walls & Columns, Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness. |