

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th3. ENGINEERING MATHEMATICS – II

	CHAPTER WISE DISTRIBUTION OF PERIODS		
Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Vector Algebra	15	15
2	Limits and Continuity	12	12
3	Derivatives	21	21
4	Integration	15	15
5	Differential Equation	12	12
	TOTAL	75	75

Discipline: COMMON TO ALL	Semester: 2nd	Name of the Teaching Faculty: Mr SUBAS CHANDRA DASH
Week	Class Day	Theory / Practical Topics
1ST	1 st	1) VECTOR ALGEBRA a) Introduction
	2 nd	b) Types of vectors (null vector, parallel vector, collinear vectors) (in component form)
	3 rd	b) Types of vectors (null vector, parallel vector , collinear vectors) (in component form)
	4 th	c) Representation of vector
	5 th	c) Representation of vector
	1 st	d) Magnitude and direction of vectors
	2 nd	d) Magnitude and direction of vectors
2ND	3 rd	e) Addition and subtraction of vectors
	4 th	e) Addition and subtraction of vectors
	5 th	f) Position vector
	1 st	f) Position vector
	2 nd	f) Position vector
3RD	3 rd	g) Scalar product of two vectors
	4 th	
	5 th	g) Scalar product of two vectors h) Geometrical meaning of dot product

		·
4ТН	1 st	h) Geometrical meaning of dot product i) Angle between two vectors
	3 rd	j) Scalar and vector projection of two vectors
	4 th	j) Scalar and vector projection of two vectors
	5 th	k) Vector product and geometrical meaning (Area of triangle and parallelogram)
	1 st	k) Vector product and geometrical meaning (Area of triangle and parallelogram)
5TH	2 nd	LIMITS AND CONTINUITY a) Definition of function, based on set theory
	3 rd	LIMITS AND CONTINUITY a) Definition of function, based on set theory
	4 th	b) Types of functions
	5 th	b) Types of functions
	1 st	i) Constant function
6ТН	2 nd	i) Constant function
	3 rd	i) Constant function
	4 th	ii) Identity function
	5 th	ii) Identity function

7 TH	1 st	ii) Identity function
	2 nd	iii) Absolute value function
	3 rd	iii) Absolute value function
	4 th	iii) Absolute value function
	5 th	iv)The Greatest integer function
	1 st	iv)The Greatest integer function
	2 nd	v) Trigonometric function
8ТН	3 rd	vi) Exponential function
	4 th	vii) Logarithmic function
	5 th	c) Introduction of limit
	1 st	d) Existence of limit
	2 nd	e) Methods of evaluation of limit
9TH	3 rd	e) Definition of continuity of a function at a point and problems based on it
	4 th	DERIVATIVES a) Derivative of a function at a point
	5 th	DERIVATIVES a) Derivative of a function at a point
10TH	1 st	b) Algebra of derivative
	2 nd	c) Derivative of standard functions
	3 rd	c) Derivative of standard functions
	4 th	d) Derivative of composite function (Chain Rule)
	5 th	d) Derivative of composite function (Chain Rule)

	l	
11TH	1 st	e) Methods of differentiation of
	2 nd	i) Parametric function ii) Implicit function
	3 rd	i) Parametric function ii) Implicit function
	4 th	iii) Logarithmic function iv) a function with respect to another function
	5 th	iii) Logarithmic function iv) a function with respect to another function
	1 st	iii) Logarithmic function iv) a function with respect to another function
	2 nd	f) Applications of Derivative
12TH	3 rd	f) Applications of Derivative
	4 th	i) Successive Differentiation (up to second order) ii) Partial Differentiation (function of two variables up to second order)
	5 th	i) Successive Differentiation (up to second order) ii) Partial Differentiation (function of two variables up to second order)
	1 st	g) Problems based on above
	2 nd	INTEGRATION a) Definition of integration as inverse of differentiation
13TH	3 rd	INTEGRATION a) Definition of integration as inverse of differentiation
	4 th	b) Integrals of standard functions
	5 th	c) Methods of integration i) Integration by substitution ii) Integration by parts
14TH	1 st	c) Methods of integration i) Integration by substitution ii) Integration by parts
	2 nd	d) Integration of the following forms
	3 rd	e) Definite integral, properties of definite integrals
	4 th	e) Definite integral, properties of definite integrals
	5 th	f) Application of integration i) Area enclosed by a curve and X – axis ii) Area of a circle with centre at origin

15TH	1 st	f) Application of integration i) Area enclosed by a curve
		and X – axis ii) Area of a circle with centre at origin
	2 nd	5) DIFFERENTIAL EQUATION a) Order and degree of a
		differential equation
	3 rd	5) DIFFERENTIAL EQUATION a) Order and degree of a
		differential equation
	4 th	b) Solution of differential equation i) 1st order and 1st
		degree equation by the method of separation of variables
	5 th	b) Solution of differential equation i) 1st order and 1st
	5	degree equation by the method of separation of variables