NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-4(THERMAL ENGINEERING I)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Thermodynamic concept & Terminology	12	12
2	Laws of Thermodynamics	14	12
3	Properties Processes of perfect gas	10	10
4	Internal combustion engine	7	8
5	Air Standard Cycle	12	10
6	Fuels and Combustion	6	8
	Total Period:	60	60

Discipline: AUTO / MECH ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. PRADYUMNA KUMAR KHILAR
Week	Class Day	Theory / Practical Topics
1 st	1 st	1.1 Thermodynamic Systems (closed, open, isolated)
	2 nd	1.2 Thermodynamic properties of a system (pressure, volume, temperature, entropy,
	3rd	1.2 Thermodynamic properties of a system (pressure, volume, temperature, entropy,
	4th	1.3 Intensive and extensive properties
	1st	1.4 Define thermodynamic processes, path, cycle, state, path function, point function.
	2 nd	1.4 Define thermodynamic processes, path, cycle, state, path function, point function.
2 nd	3 rd	1.5 Thermodynamic Equilibrium.
	4 th	1.6 Quasi-static Process
	1 st	1.7 Conceptual explanation of energy and its sources
	2 nd	1.8 Work , heat and comparison between the two.
3 rd	3rd	1.9 Mechanical Equivalent of Heat
	4th	1.10Work transfer, Displacement work
	1 st	2.1 State & explain Zeroth law of thermodynamics.
4 th	2 nd	2.1 State & explain Zeroth law of thermodynamics.
	3 rd	2.2 State & explain First law of thermodynamics.
	4 th	2.3 Limitations of First law of thermodynamics

5 th	₁ st	2.4Application of First law of Thermodynamics (steady flow energy equation and its
	2 nd	2.4Application of First law of Thermodynamics (steady flow energy equation and its
	3rd	2.4 Second law of thermodynamics (Claucius & Kelvin Plank statements).
	4 th	2.4 Second law of thermodynamics (Claucius & Kelvin Plank statements).
6 th	₁ st	2.4 Second law of thermodynamics (Claucius & Kelvin Plank statements).
	2 nd	2.5 Application of second law in heat engine, heat pump, refrigerator & determination of
	3rd	2.5 Application of second law in heat engine, heat pump, refrigerator & determination of
	4 th	2.5 Application of second law in heat engine, heat pump, refrigerator & determination of
	1st	2.5 Application of second law in heat engine, heat pump, refrigerator & determination of
7 th	2nd	3.1 Laws of perfect gas: Boyle's law, Charle's law, Avogadro's law, Dalton's law of partial
	3rd	3.1 Laws of perfect gas: Boyle's law, Charle's law, Avogadro's law, Dalton's law of partial
	4 th	3.2 Explain specific heat of gas (Cp and Cv)
8 th	1 st	3.3 Relation between Cp & Cv.
	2 nd	3.3 Relation between Cp & Cv.
	3rd	3.4 Enthalpy of a gas.
	4th	3.5 Work done during a non- flow process.
gth	1 st	3.6 Application of first law of thermodynamics to various non flow process(Isothermal,Isobaric, Isentropic and polytrophic process)
	₂ nd	3.6 Application of first law of thermodynamics to various non flow process(Isothermal,Isobaric, Isentropic and polytrophic process)
	3rd	3.6 Solve simple problems on above.
	4 th	3.7 Free expansion & throttling process.
]	

10 th	1 st	Internal combustion engine
	2 nd	INTERNAL ASSESMENT
	3rd	INTERNAL ASSESMENT
	4 th	4.1 Explain & classify I.C engine.
11 th	1 st	4.2 Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM.
	2 nd	4.2 Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM.
	3rd	4.3 Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine.
	4 th	4.3 Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine.
12 th	1 st	4.4 Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine.
	2 nd	4.4 Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine.
	3rd	5.1 Carnot cycle
	4 th	5.1 Carnot cycle
	1 st	5.2 Otto cycle.
+h	2 nd	5.3 Diesel cycle.
13 th	3 rd	5.3 Diesel cycle.
	4 th	5.4 Dual cycle.
14 th	1 st	5.4 Dual cycle.
	2 nd	5.5 Solve simple numerical.
	3rd	5.5 Solve simple numerical.
	4th	6.1 Define Fuel.
	1 st	6.2 Types of fuel.
	2 nd	6.3 Application of different types of fuel.
15 th	3rd	6.4 Heating values of fuel.
	4 th	6.5 Quality of I.C engine fuels Octane number, Cetane number.