DEPARTMENT OF BASIC SCIENCE ENGINEERING MATHEMATICS-III **Prepared by:-SAGARIKA TRIPATHY** ## CONTENTS | CHAPTER-1 | MATRICES | 2 - 7 | |-------------|-----------------------------------|-----------------| | CHAPTER - 2 | COMPLEX NUMBER | 8-10 | | CHAPTER - 2 | LINEAR DIFFERENTIAL EQUATION | 11 - 24 | | CHAPTER-3 | LAPLACE TRANSFORMATION | 25–42 | | CHAPTER - 4 | FOURIER SERIES | 43-52 | | CHAPTER - 5 | FINITE DIFFERENCE & INTERPOLATION | 53 – 64 | | CHAPTER - 6 | NUMERICAL SOLUTION OF EQUATION | 65 – 7 1 | ## CHAPTER - 1 ## **MATRICES** **Minor** – Minor is the determinate value which is obtained by deleting row & coloumn of the particular element and denoted by the symbol, i-rows j-coloum. **Upper triangular Matrix** – A matrix is said to be upper triangular if the elements below the main diagoned are zeros. Elementary transformations : – The following operations three of which refer to rows are known as elementary transformations. - I. The interchange of any two rows (Rij) - II. The multiplication of any row by a non-zero scalar (kRi) - III. The addition of a constant multiple of the elements of any row to the corresponding elements of any other row (Ri + kRj) **Equivalent matrix** – Two matrices A and B are said to be equivalent if one can be obtained from the other by a sequence of elementary transformations. Rank of a matrix: A matrix is said to be of rank 'r' if - (i) It has atleast one non-zero minor of order 'r' - (ii) Every minor of order higher than 'r' varishes. The rank of a matrix A shall be denoted by the symbol e(A). ## **Working Rule:** **Step – I**: Conver the matrix to the upper triangular form. Step – II: The no.of non-zero rows is the rank of the matrix ## Example -1: ## **Solution:** **Consistency:** A system of equatiars are said to be consistent if either they will have unique solution on many solution and sid to be inconsistent if they will have no solution. $$2x + 3y = 8$$ $x + 2y = 5$ $x - y = 10$ $x - 2$ $y = 4$ $2x + 4y = 10$ $3x - 3$ $y = 15$ (unique solution) (Mo solution) Consistency of a system of linear equations : - Consider a system of m linear equations Containing the n unknows x, x.....x. Writing the above equations in matrix form we get. $$A = \begin{pmatrix} e & a_{11} & a_{12} & a_{1n} & e a$$ A is the co-efficient matrix and C is called agumented matrix ## **Rouche's Theorem: (Without proof)** The system of equations (1) is consistant if and only if the co-efficient matrix A and the augmented matrix C are of some rank otherwise the system is inconsistent. Procedure to test the consistency of a system of equations in x unknows. Find the ranks of the co-efficient matrix A and the augmented matrix 'C' by reducing to the upper triangular form by elementary row operations. - (a) Consistant equations : If Rank A = Rank C - (i) Unique solution Rank A = Rank C = n Where n = number of unknowns. - (ii) Infinite solution : Rank A = Rank C = r. r < n. - (b) Inconstant equations if Rank A 1 Rank C ## Example -2: Show that the equations $$2x + 6y = -11$$, $6x + 20y - 6z = -3$, $6y - 18z = -1$ are not consistant. #### **Solution:** Writing the above equations in matrix form The rank of C is 3 and rank of A is 2 Rank A 1 Rank C. \The system of equations are not consistant ## Example -3: Test consistency and solve: $$5x + 3y + 7z = 4$$ $3x + 2by +2z = 9$ $7x + 2y + 10z = 5$ #### **Solution:** Writing the above equations in matrix form Here Rank of A = Rank of C. Hence the equations are consistent. But the rank is less than 3 i.e. the number of unknows. So its solutions are infinite Let $$z = k$$, $11y - k = 3$ or $y = \frac{3}{k} + \frac{k}{11} = \frac{3 \cdot 6 \cdot 3}{11} + \frac{k \cdot 6}{11} = \frac{7}{11} + \frac{7}{11} = \frac{7}{11}$ ## Example -4: Determine the values of 1 & m so that the following equations have (i) no solution (ii) a unique solution (iii) infinite number of solutions. $$x + y + z = 6$$, $x + 2y + 3z = 10$, $x + 2y + 1z = m$ ## **Solution:** Writing the above equations in matrix form we have $$\ \ AX=B$$ - (i) There is no, solution = b r(A) r(C)i.e. 1-3=0 or 1=3 & m-10 o r m 10 - (ii) There is a unique solution if r(A) = r(C) = 3 i.e., $1-3\ ^10$ or $1\ ^1$ 3 and m have any value - (iii) There are infinite solution of r(A) = r(C) = 21-3=10 or 1=3 and m-10=0 or m=10 ## Assignments 1. Find the rank of the matrix $$\stackrel{\text{\'e}}{\Rightarrow}$$ 2 3 $\stackrel{\text{\'u}}{\circ}$ $\stackrel{\text{\'e}}{\Rightarrow}$ 2 4 7 $\stackrel{\text{\'u}}{\circ}$ $\stackrel{\text{\'e}}{\Rightarrow}$ 6 10 $\stackrel{\text{\'e}}{\Rightarrow}$ 2. Test the consistency & solve $$4x - 5y + z = 2$$ $$3x + y - 2z = 9$$ $$x + 4y + z = 5$$ 3. Determine the values of a & b for which the system of equations $$3x - 2y + z = b$$ $5x - 8y + 9z = 3$ $2x + y + az = -1$ (i) has a unique solution (ii) has no solution (iii) has infinite solution. ## **COMPLEX NUMBERS** #### INTRODUCTION We have the knowledge of integers, fractions and irrational number (all these constitute real numbers). But if we try to solve the equation $x^2 + 1 = 0$, we observe that these numbers are not adequate. Trying to solve this equation, we arrive at $x^2 = -1$ i.e. $\sqrt{x} = -1$. Square of a positive real number is positive and that of a negative real is also positive. So there is no real number whose square is negative. So we are to create a new kind of number. We define the square root of a negative number as imaginary number particularly -1 = i, the basic imaginary number. Then $$\sqrt{-4} = 2i$$, $\sqrt{-2} = \sqrt{3}i$ and so on. Imaginary numbers: Taking $$i = \sqrt{-1}$$, we observe that $i^2 = -1$ $i^3 = -1$. $i = -i$ $$\begin{array}{lll} & i^4=1\\ \text{Since} & i^4=1,\ i=i^5=i^9=i^{13}=......=i^{4n+1},\ \text{where n is an integer.}\\ & i^a=i^6=i^{10}=i^{14}=.....=i^{4n+2} \end{array}$$ $$i^3 = i^7 = i^{11} = i^{15} = \dots = i^{4n+3}$$ $i^4 = i^8 = i^{12} = i^{16} = \dots = i^{4n}$ #### **COMPLEX NUMBERS** The numbers of the form a + ib where a and b are real numbers and $i = -1\sqrt{are}$ known as complex numbers. In complex number z = a + ib, the real numbers a and b are respectively know as real and imaginary parts of z and we write: $$Re(z) = a$$ and $Im(z) = b$ Thus the set C of all complex numbers is given by $C = \{z : z = a + ib, where a, b \in R\}$ Purely real and purely imaginary numbers : A complex number z is said to be - (i) Purely real, if Im(z) = 0 - (ii) Purely imaginary, if Re (z) = 0 Thus, 2, -7, $\sqrt{3}$ etc are all purely real numbers. While2i, $i\sqrt{3}$, $-\frac{1}{2}$ i etc are purely imaginary. Conjugate of a complex number: 8 The conjugate of a complex number 'z', denoted by \overline{z} is the complex number obtained by changing the sign of imaginary part of z. eg. $$d_{2+3i} \dot{i} = (2-3i);$$ $d_{3+5i} \dot{i} = (3-5i),$ $6i = -6i;$ $-2i = 2i$ **Modulus of a complex number**: If z = x + iy be a complex number, the modulus of z, written as |z| is a real number $\sqrt{x^2 + v^2}$. For $$z=3+4i$$, $|z|=\sqrt{\beta^2+4^2}=5$. Also $|\overline{z}| = |z|$. If z = x + iy, z = x - iy. $$|z| = \sqrt{x^2 + y^2}, |\overline{z}| = \sqrt{x^2 + (-y)^2} = \sqrt{x^2 + y^2}$$ #### SUM DIFFERENCE AND PRODUCT OF COMPLEX NUMBERS For any complex number $$z_1 = (a + ib)$$ and $z_2 = (c + id)$ (i) $$z_1 + z_2 = (a + ib) + (c + id) = [(a + c) + i (b + d)]$$ (ii) $$z_1 - z_2 = (a + ib) - (c + id) = [(a - c) + i (b - d)]$$ (iii) $$z_1z_2 = (a + ib)(c + id) = [(ac - bd) + i (ad + bc)]$$ ## CURE ROOTS OF UNITY Let $3\sqrt{1} = x$, then $x^3 = 1$ [on cubing both sides] $$> x^3 - 1 = 0$$ $> (x^2 + x + 1) = 0$ $$x - 1 = 0$$ or $x^2 + x + 1 = 0$ $$p = x = 1$$ or $x = \frac{-1 \pm \sqrt{1 - x}}{x}$ $$p x = 1 or x = \frac{-1 \pm \sqrt{1-4}}{2}$$ $$p x = 1 or x = \frac{-1 \pm i\sqrt{3}}{2}$$ $$\therefore \text{ The cube roots of unity are 1, } \frac{1}{2} + i\sqrt{3} \text{ and } \frac{-1 - i\sqrt{3}}{2}$$ Clearly one of the cube roots of unity is real and the other t₩o are complex. #### Example -1: Express in the form a + ib Example - 2: Find the value of $i^{17} + i^{20} - i^{13}$ $$\begin{array}{l} \textit{Sol}^m : i^{17} + i^{20} - i^{13} = i^{16} \cdot i + i^{20} - i^{12} \cdot i = (i^2)^8 \cdot i + (i^2)^{10} - (i^{2})^6 \cdot i \\ = (-1)^{8} i + (-1)^{10} - (-1)^{6} i = i + 1 - i = 1 \end{array}$$ Example -3: If 1, w, w^2 are the cube roots of unity prove that (a) $$(1-w) (1-w^2) (1-w^4) (1-w^5) = 9$$ Solⁿ: L.H.S. $(1-w) (1-w^2) (1-w^4) (1-w^5)$ = $(1-w) (1-w^2) (1-w^3 \cdot w) (1-w^3w^2)$ = $(1-w) (1-w^2) (1-w) (1-w^2)$ = $(1-w)^2 (1-w^2)^2 = [(1-w) (1-w^2)]^2$ = $$[(1 - w - w^2 + w^3]^2 = (2 - w - w^2)^2$$ = $(2+1)^2=3^2=9$ Example - 4: Find square roots of (a) 3 + 4i Solⁿ: (a) Let x, y ∈ R, x + iy = $$\sqrt{3}$$ $\sqrt{4i}$ x² - y² + i 2xy = 3 + 4i Equating real and imaginary parts $$x^2 - y^2 = 3$$ and $2xy = 4$ $$(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2 = 25$$ Hence $x^2 + y^2 = \pm 5$, But since $x^2 + y^2$ is non-negative, we have $$x^2 + y^2 = 5$$ $$x^2 - y^2 = 3$$ $2x^2 = 8$ $$2x^2 = 8$$ i.e, $$x^2 = 4$$, i.e, $x = \pm 2$, $y^2 = 1$ i.e., $y = \pm 1$ Hence square roots of $3 + 4i = \pm (2 + i)$ ## Assignment - If w be the cube roots of unity, then prove that $(1 - w + w^2)^7 + (1 + w + w^2)^7 = 128$ - Find square roots of $-5 + 12\sqrt{-1}$ 2. ## LINEAR DIFFERENTIAL EQUATIONS ## **Introduction:** The Mathematical formulation of many problems in science, Engineering and Econom-ics gives rise to differential Equations. For example: The problem of motion of a satellite - 1 The flow of fluids. - 1 The flow of current in an electric circuit - 1 The growth of population - The Conduction of heat in rod etc leads to differential equations ## **Definition of Differential Equation:** A differential equation is an equation involving derivatives of one or more dependent variables with respect to one or more independent variables. There are two types of Differential Equation - 1. Ordinary differential Equation - 2. Partial differential Equation
Example: (a) $$\frac{dy}{dx} + y = x^2$$ (b) $$\frac{d^3 y}{dx^3} + 3\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + y = 0$$ (c) $$\frac{\P u \ \text{æ} \P u \ \ddot{o}^2}{-+ \varsigma --- \div = 4}$$ $$\P t \quad \grave{e} \P t \ \emptyset$$ ## **Linear differential Equation:** Linear differential Equations are those in which the dependent variable and its deriva-tives occur only in the first degree and are not multiplied together. The differential Equation of the form $$\frac{d^n y}{dx^n} + k_1 \frac{d_{\frac{n-1}{2}} y}{dx^{n-1}} + k_2 \frac{d_{\frac{n-2}{2}} y}{dx^{n-2}} + k_n y = X \qquad(1)$$ Is known as linear differential Equation with constant coefficients. Where k , k k are constant, X is the function of x. There are two types of linear differential Equation - 1. Homogeneous LDE - 2. Non Homogeneous LDE ## **Homogeneous Linear Differential Equation:** If RHS of Equation (1) is Equal to zero then we get homogeneous LDE. ie $$\frac{d^n y}{dx^n} + k_1 \frac{d_{n-1} y}{dx^{n-1}} + k_2 \frac{d_{n-2} y}{dx^{n-2}} + \dots + k_n y = 0$$ Where f(x) is the function of 'x' ## The general solution format of Equation (1) of the form (C.S = C.F + P.I) Where C.S. – Complete Solution C.F – Complementary function P.I – Particular integral So complete solution of Equation becomes (y = C.F + P.I) Note - 1: In case of Homogeneous LDE $$C.S = C.F$$ [where $P.I = 0$] Note - 2: In case of Non-Homogeneous LDE $$C.S = C.F + P.I$$ ## Operator: Denoting $$\frac{d}{dy}$$, $\frac{d^2}{dx^2}$, $\frac{d^3}{dx^3}$by D, D, D etc. So that $$\underline{\underline{\qquad}} = Dy$$ $$\frac{d^2y}{dx^2} = D^2y$$ $$\frac{d_n y}{=} = D_n y$$ Where D-Derivative Then $$\overline{D}$$ – Integration Then operator form of equation (1) becomes $$D^{n}y + K_{1}D^{n-1} y + k_{2}D^{n-2} y + \dots + K_{n}y = X$$ $$P (D^{n} + k_{1}D^{n-1} + k_{2}D^{n-2} + \dots + k_{n})y = X$$ $$P F(D) y = X$$ (2) Where F (D) = $$D^n + k D_1^{n-1} + k D_{n-2} + \dots + k D_n$$ of function D ## **Auxiliary Equation (AE)** Putting the coefficient of y equal to Zero in Equation (2) we get an Auxiliary Equation. i.e. $$F(D)=0$$ i.e. $$D^n + k_1 D^{n-1} + k_2 D^{n-2} + \dots + k_n = 0$$ Depending value of 'D' in Auxiliary Equation, complementary function are different types. ## Case - I: If roots are real & Different Let m1 & m2 are two real roots and different i.e. $$m_1$$ 1 m_2 Then $$C.F = C_1em_1x + C_2em_2x$$ Where C₁, C₂, arearbitrary constant ## Case - II : If roots are real & Equal Let m₁ & m₂ are two real roots & Equal i.e $$m_1 = m_2$$ The C.F = $$(C_1 + C_2x)$$ em₁ x Similarly if $m_1 = m_2 = m_3$ (Three roots are Equal) Then C.F = $$(C_1 + C_2x + C_3x^2) e^{m_1x}$$ ## Case - III: If roots are Complex conjugate Let $m_1 = a \pm ib$ are conjugate complex root Then C.F = $$e^{ax}$$ {C₁cosb x + C₂sinb x } ## Case - IV: If two conjugate complex roots are equal Let $$m_1 = m_2 = a \pm ib$$ are equal Then C.F = $$e^{ax} \{C_1 + C_2x\} \cos bx + (C_3 + C_4x) \sin bx$$ ## Example -1: Solve $$\frac{d^2 y - 8}{dx^2} \frac{dy}{dx} + 15y = 0$$(1) #### **Solution:** The operator from of equation (1) becomes $$(D^2 - 8D + 15) y = 0$$ So Auxiliary Equation D²- $$8D+15=0$$ $$b (D-3)(D-5)=0$$ Then C.F = C $$e^{3x}$$ + C e^{5x} So complete Solution $$y = C e^{3x} + C e^{5x}$$ (Ans) ## Example -2: Solve $$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0$$ ## **Solution:** The operator from of given equation is $$(D^2 - 6D + 9) y = 0$$ Then A.E D^2 -6D+9=0 P $(D-3)^2$ =0 P $D=3.3$ C.F = $$(C + C x) e^{3x}$$ Then C.S $y = (C + C x) e^{3x}$ (Ans) ## Example -3: Solve $$(D^2 + 4D + 5) y = 0$$ ## **Solution:** So A.E $$D^2+4D+5=0$$ $$D = \frac{-4 \pm \sqrt{16-4.1.5}}{2.1}$$ $$= -4 \pm \frac{\sqrt{4}}{2}$$ $$= \frac{-4 \pm 2i}{i \cdot 2} = -2 \pm$$ Then C.F = $e^{-2 \cdot x}$ {C $\cos x + \text{C} \sin x$ } So C.S $y = e^{-2 \cdot x}$ {C $\cos x + \text{C} \sin x$ } (Ans) ## Procedure to finding particular Integral. We know that F(D) y = X $$\dot{\mathbf{p}} \qquad y = \frac{\mathbf{X}}{F(D)}$$ Depending upon nature of 'X', Particular integral are different types Case -1: When $X = e^{ax}$ Then P. I = $$F(a)$$ where D = a If F (a) = 0, Then PI = $$\frac{\chi e^{ax}}{F'(a)}$$ provided F¢ (a) ¹ 0 If $$F \notin (a) = 0$$, Then PI $= \frac{\underline{x}_2 \underline{\varrho}_{ax}}{F''(a)}$ provided $F^2(a)^{-1} 0$ And so on. Case – 2: Whex $$X = \sin(ax + b)$$ or $\cos(ax + b)$ Then PI = $$\frac{\sin (ax + b)}{F D^2} = -a^2$$ But not D = -a Sin $$(ax + b)$$ = $$F(-a^2)$$ provided $F(-a^2)^{-1}$ 0 If F $(-a^2) = 0$, The above rule Fails & We proceed further $$ie P.I = \frac{x \sin(ax + b)}{F_{\xi}(-a_2)}, Provided F_{\xi}(-a^2)$$ If F¢ $(-a^2) = 0$, Then P.I = x^2 $$\frac{\operatorname{Sin}(ax+b)}{F \notin \varphi - a^2}$$ And so on Case – 3: When $X = e^{ax}v$, Where v = function of 'x' Then PI = $$\frac{e_{\ell}^{ax}}{F} \frac{D}{D}$$ = $ax \qquad 1$ $e = \frac{e_{\ell}^{ax}}{F(D+a)} V$ Similary when $X = e^{-ax}v$ Then PI = $$e^{-ax} \underbrace{1}_{F D+a} v$$ **Case – 4:** When $$X = x^{m}$$ (*ie*, x , x^{2} , x^{3}) Then PI $$= \frac{\mathcal{X}_m}{\frac{() - \left[F \cdot (\mathsf{D}) \right] \, x}{F \, D}}$$ $-1 \, \, \mathrm{m}$ Convert F (D) into $\{1 + F(D)\}\$ or $\{1 - F(D)\}\$ by taking D^m (if possible). Then by using Binomial Theorom we find solution. Case - 5: When X = xv Then P.I = $$\frac{xv}{F(D)}$$ $$\begin{array}{ccc} \ddot{I} & ()\ddot{I} & v \\ \ddot{I} & F \notin D \ddot{I} & \\ & = \dot{I} x & \underline{\qquad } \dot{\underline{Y}} & \\ \ddot{I} & \dot{\underline{\qquad }} \dot{\underline{Y}} & \\ & \dot{\underline{\qquad }} \dot{\underline{\qquad }} & \dot{\underline{\qquad }} & \\ \end{array}$$ Where F¢ (D) is the Derivative of F (D) Case – 6: When x =is any other function Then P.I = $$\frac{x}{F(D)}$$ Convert F (D) into (D - a) or (D + a) factor form Then if = $$\frac{x}{D - \alpha} = e^{ax} \grave{0} X e^{-at} dx$$ if = $\frac{x}{D - \alpha} = e^{-ax} \grave{0} X e^{at} dx$ ## Example -4: Find P. I of $$(D^2 + 6D + 3)$$ $y = e^{2x}$ ## **Solution:** P.I. = $$\frac{e^{2x}}{D^2 + 6D + 3}$$ put D = a i.e. $$D = 2$$ Then P.I. = $$\frac{e^{2x}}{(2)^2 + 6(2) + 3}$$ $$= \frac{e^{2x}}{4+12+3} = \frac{e^{2x}}{19}$$ (Ans) ## Example -5: Solve $$\frac{d^3 y}{dx^3} - 3\frac{d^2 y}{dx^2} + 4y\frac{dy}{dx} - 2y = e^x + \cos x$$ ## **Solution:** The operator form of given equation becomes $$(D^3 - 3D^2 + 4D - 2) y = e^x + \cos x$$ So A.E $$D^3-3D^2+4D-2=0$$ $$PD - 1, 1 \pm i$$ $$PD = 1, 1 \pm i$$ $$C.F = C e^x + e^x \{C \cdot Cosx + C \cdot Sinx\}$$ C.F = $$C e^{x} + e^{x} \{C \cos x + C \sin x\}$$ Then PI = $$\frac{e^{x} + \cos x}{D^{3} - 3D^{2} + 4D - 2}$$ $$\frac{e^x}{=(D-1)(D_2-2D+2)+D^3-3D^2+4D-2}$$ $$= \frac{e^x}{D-1} \frac{\cos x}{1-2+2} + \frac{\cos x}{-1D-3-1+4D-2}$$ $$= \frac{e^{x}}{D-1} + \frac{\cot x}{3D+1}$$ $$= x \frac{e^{x}}{1} + \cos x (3D-1)$$ $$= x e^{x} + \frac{(3D+1)(3D-1)}{3D \cos x - 1}$$ $$= x e^{x} + \frac{(3\sin x + \cos x)}{3\sin x \cos x - 1}$$ $$= x e^{x} + \frac{(3\sin x + \cos x)}{-9-110}$$ So C.S $y = C1 e^x + e^x \{C2 \cos x + C^3 \sin x\} + x e^x + \overline{10} (3 \sin x + \cos x)$ ## Example – 6: Find the P.I. of $(D^3 + 1)$ $y = e^x \cos x + \sin 3x$ #### **Solution:** P.I. = $$\frac{e^x \cos x + \sin 3x}{D^3 + 1}$$ = $e^x \frac{\cos x}{D + 1_3^{-1}} + \frac{\sin 3x}{D^2 D + 1}$ = $e^x \frac{\cos x}{-D^3 + 3D^2 + 3D + 2} + \frac{\sin 3x}{-9 D + 1}$ = $e^x \frac{\cos x}{D^3 + 3D^2 + 3D + 2} + \frac{\sin 3x}{-9 D + 1}$ = $e^x \frac{\cot x}{D^3 + 3D^2 + 3D + 2} + \frac{\sin 3x}{1 - 9D}$ = $e^x \frac{\cot x}{2D - 1} + \frac{\sin 3x}{1 - 9D}$ = $e^x \frac{\cos x 2D + 1}{2D - 1} + \frac{\sin 3x 1 + 9D}{1 - 9D + 9D}$ ()() ()() = $e^x \frac{2D(\cos x) + \cos x}{4D^2 - 1} + \frac{\sin 3x + 9D(\sin 3x)}{1 - 81D^2}$ = $e^x - 2\sin x + \cos x + \sin 3x + 27\cos 3x$ $e^x - 2\cos x + \cos x + \sin 3x + 27\cos 3x$ = $e^x - 2\cos x + \cos x + \sin 3x + 27\cos 3x$ = $e^x - 2\cos x + \cos x + \sin 3x + 27\cos 3x$ = $e^x - 2\cos x + \cos x + \sin 3x + 27\cos 3x$ (Ans) ## Example -7: Solve $$\frac{d^{2}y^{2}}{dx^{2}} = x \cos x$$ ## **Solution:** The operator form is $(D^2 + 9)$ $y = x \cos x$ So A.E $$D^2 + 9 = 0$$ $$b D^2 = -9$$ $$P D = \pm 3i$$ $$C.F = C_1 \cos 3x + C_2 \sin 3x$$ Now P.I = $$\frac{x \cos x}{D^2 + 9}$$ Here F (D) = $$D^2 + 9$$ $$F\phi(D) = 2D$$ $$\mathbf{i} \qquad F \notin (D) \mathbf{y} \qquad V$$ Then PI = $$\begin{pmatrix} x & -F(D) & (D) \\ 1 & 0 & p \\ 1 & 0 & 2D & \cos x \end{pmatrix}$$ $$= \mathbf{i} x - \frac{2}{2} \mathbf{\hat{y}} - \frac{2}{2} \qquad \text{put } \mathbf{D}^2 = -1$$ $$\begin{array}{ccc} \hat{1} & D + 9 \, \hat{p} \, D + 9 \\ \hat{1} & 2 \, D \, \ddot{u} \cos x \end{array}$$ $$\hat{1} = \hat{1} x - \frac{2 D \ddot{u} \cos x}{2 - \acute{y} - \frac{2}{2}}$$ $\hat{1} D + 9 \dot{b} - 1 + 9$ $$\frac{x \cos x}{D(\cos x)}$$ $$= 8 - 8(D_2 + 9)$$ $$= \frac{x \cos x}{8} + \frac{2\sin x}{8}$$ $$= \frac{x \cos x}{8} + \frac{\sin x}{32} = \frac{4 x \cos x + \sin x}{32}$$ So C.S $$y = C \cos x + C \sin 3x + \frac{4 x \cos x + \sin x}{32}$$ (Ans) ## Example -8: Solve $$\frac{d^{2}y^{2}}{dx^{2}} = x^{2}$$ ## **Solution:** The operation form given equation becomes $$(D^2 + 4) y = x^2$$ So A.E. $$D_2 + 4 = 0$$ $$b D^2 = -4$$ $$P = \sqrt{-4}$$ $$P D = \pm 2i$$ $$C.F = C_1 \cos 2x + C_2 \sin 2x$$ Then P.I = $$\frac{x^2}{a} \underbrace{D^2 \ddot{o}_2}_{4\varsigma 1 + \cdots \div x}$$ $$\overset{\grave{e}}{=} 4 \not 0$$ $$\overset{1}{=} \frac{1}{\varsigma} 1 + \underbrace{D^2 \ddot{o}^{-1}}_{\varsigma 2}$$ $$\overset{4\grave{e}}{=} 4 \not 0$$ $$\overset{1}{1} D^2 D^2 \ddot{u}_2$$ $$\overset{2}{=} -i^1 - \dots + \dots \times \dot{y} x \qquad \text{by using Binomial theorem}$$ $$\overset{4\hat{1}}{1} \overset{4}{1} \overset{2}{1} \overset{16}{1} \overset{16}{1} \overset{2}{1} \overset{2}{1} \overset{16}{1} \overset{2}{1} \overset{2}{1} \overset{1}{1} \overset{1}{1} \overset{1}{1} \overset{1}{1} \overset{2}{1} \overset{2}{1} \overset{1}{1} \overset{1}{1}$$ So C.S y = C $$\cos 2x
+ C \sin 2x + \frac{2x^2 - 1}{8}$$ (Ans) ## Other Method for finding P. I: Method of variation of Parameters: This method is applies to equations of the form $$y^2 + py + qy = x$$ Where p, q & x are function of x. Then P. I = $$-y_1 \stackrel{\circ}{\circ} \frac{y_2 x}{\cdot} dx + y_2 \stackrel{\circ}{\circ} \frac{y_1 x}{\cdot} dx$$ Where y1 & y2 are the solution of $y^2 + py \phi + qy = 0$ of the form = $c_1y_1 + c_2y_2$ &w is called wronskian of y1 & y2 Calculate by formula w (y₁, y₂) = $\begin{vmatrix} y_1 & y_2 \\ y_2' & y_2' \end{vmatrix}$ ## Example -9: Solve $$\frac{d y^{2}}{dx^{2}} = \csc x$$ #### **Solution:** The operator form of given equation is $$(D^2 + 1) = \operatorname{Cosec} x$$ So A.E $$D^2 + 1 = 0$$ $$P D^2 = -1$$ **P D** = $$\sqrt{-1} = 0 \pm i$$ $$C.F. = C_1 \cos x + C_2 \sin x$$ Here $$y_1 = \cos x \ y_2 = \sin x$$ $$W(y, y) = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix}$$ $$=\cos^2 x + \sin^2 x = 1$$ Then P.I = $$-\cos x$$ $\grave{0} \frac{\sin x \cdot \cos ecx}{1} dx + \sin x$ $\grave{0} \frac{\sin x \cdot \cos ecx}{1} dx$ = $-\cos x$ $\grave{0} \sin x \cdot \frac{1}{\sin x} dx + \sin x$ $\grave{0} \cos x \frac{1}{\sin x} dx$ = $-\cos x$ $\grave{0} dx + \sin x$ $\grave{0} \cot x dx$ = $-\cos x$ $(x) + \sin x$ $(x) \sin x$ So C.S $$y = C_1 \cos x + C_2 \sin x + \sin x \ln x - x \cos x$$ (Ans.) ## **Partial Differential Equation** Let z = f(x, y) be a function containing two independent variable x & y and z is the Dependent variable. **Notation :** Let z = f(x, y) be a function of x & y Then $$\frac{\partial z}{\partial x} = p$$ $\frac{\partial z}{\partial y} = q$ $$\frac{\partial^2 z}{\partial x^2} = r$$ $\frac{\partial^2 z}{\partial y} = t$ $$\frac{\partial^2 z}{\partial x^2} = S$$ $$\frac{\partial^2 z}{\partial x \partial y}$$ ## Formation of Partial differential Equation A partial differential equation can be formed by - (i) Eliminating arbitrary constant. - (ii) Eliminating arbitrary function. ## Example -10: Form a partial different equation by eliminating function $$Z = f(x^2 + y^2)$$...(1) ## **Solution:** Differentiating partially w.r.t. x & y in equation (1) we get $$\frac{\partial z}{\partial x} = f'(x^2 + y^2).2x \text{ (taking y as a constant)}$$ $$P p = f \phi (x^2 + y^2). 2x$$...(2) Similarly $$q = f \phi(x^2 + y^2)$$. 2y ...(3) $$\underline{p} \quad f'(x^2 + y^2).2x$$ $\frac{p}{f'(x^2 + y^2).2x}$ Dividing (2) & (3) we get $q = f'(x^2 + y^2).2y$ $$\frac{p = -1}{\mathcal{X}_{qy}}$$ $$P py - q x = 0 (Ans.)$$ ## **Linear Equation of the First order:** A Linear partial differential equation of the 1st order is of the form $$Pp + Qq = R$$ Where P, Q & R are function of x, y, z. This equation also known as Lagrange's Linear equation ## **NOTE:** The general solution of the liner partial differential equation Pp + Qq = R is $$f(a, b) = 0$$ Or $$a = f(b)$$ Or $$b = f(a)$$ Where f is an arbitrary function & u(x, y, z) = a & v(x, y, z) = b form the solution of the equation $$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$$ Then that can be solved by two methods - (1) Method for Grouping - (2) Method for Multipliers ## **Method or grouping:** Take any two fraction from Subsidiary Equation such that the 3rd variable is absent or it may be cancelled. $$dx = dy$$ For example take $\frac{dx}{P} = \frac{dy}{Q}$ (such that z may be absent) R After Integration we get f(x, y) = a $$\frac{dy}{dz} = \frac{dz}{dz}$$ Similarly we take Q After Integation f(y, z) = b So general solution is a = f(b) or $$b = f(a)$$ or $$f(a, b) = 0$$ ## **Method for Multipliers** Let us choose the multiplier's (P ϕ , Q ϕ , R ϕ) such That $$PP\phi + QQ\phi + RR\phi = 0$$ Then we write $P\phi dx + Q\phi dy + R\phi dz = 0$ On Integration we get f(x, y, z) = a Similarly choosing the multipliers (P2, Q2, R2) such that $$PP^2+QQ^2+RR^2=0$$ On Integration we get g(x, y, z) = b So general solution is a = f(b) or f(a, b) = 0 ## **Example – 11:** Solve $$y^2zp + z^2xq = y^2x$$ ## **Solution:** It is of the form Pp + Qq = R Where $$P = y^2z$$, $Q = z^2x$, $R = y^2x$ So its S.E $$\frac{dx}{2} = \frac{dy}{2} = \frac{dz}{2}$$ y z z x y x Taking 1st and 3rd fraction, we get $$\frac{dx}{dx} = \frac{dy}{dx}$$ (Here 3rd variable y² is cancelled) $$\mathbf{P} \quad x dx = z dx$$ Integrating both sides we get $\grave{O} xdx = \grave{O} zdz$ $$\mathbf{P} \quad \frac{x^2}{2} \quad \frac{=}{2}z^2 + c$$ $$\mathbf{p} \quad x^2 - \mathbf{z}^2 = 2\mathbf{c} = a$$ Similarly taking 2nd and 3rd i.e. $$\frac{dy}{z^2} = \frac{dz}{y^2} x$$ $$P \qquad y^2 dy = z^2 dz$$ Integrating both sides we get $$\mathbf{P} \quad \frac{y_3}{33} = \frac{z_3}{2} + c_1$$ $$p y^3 - z^3 = 3c^1 = b$$ So general solution in $x^2 - z^2 = f(y^3 - z^3)$ (Ans.) ## **Example – 12:** Solve $$x(z^2 - y^2) p + y(x^2 + y^2) q = z = (y^2 - x)$$ ## **Solution:** It is the equation of the form $$Pp + Qq = R$$ Where $$P = x (z^2 - y^2) Q = y (x^2 - z^2) R = z (y^2 - x^2)$$ So its S.E is $$\frac{dx}{x(z_2-y_2)} = \frac{dy}{=y(x_2-z_2)} = \frac{dz}{z(y_2-x_2)}$$ Let us choose multipliers (x, y, z) i.e $P \phi = x$, $Q \phi = y$, $R \phi$ = z Such that $$x.x (z^2 - y^2) + y.y (x^2 - z^2) + z.z (y^2 - x^2)$$ = $x^2z^2 - x^2y^2 + y^2x^2 - y^2z^2 + z^2y^2 - z^2x^2$ = 0 Then we write xdx + ydy + zdz = 0 On integration we set $$\frac{x^{2}}{2} + \frac{y^{2}}{2} + \frac{z^{2}}{2} = c$$ P $x^{2} + y^{2} + z^{2} = 2c = a$ Such that ${}^{-1}x^{2}(z^{2}-y^{2})+{}^{1}y^{2}(x^{2}-z^{2})+{}^{1}z^{2}(y^{2}-x^{2})$ $$= z^2 - y^2 + x^2 - z^2 + y^2 - x^2 = 0$$ Then $$\frac{1}{x} dx + \frac{1}{y} dy + \frac{1}{z} dz = 0$$ On integration we get $$\log x + \log y + \log z = \log b$$ $$P \log(xyz) = \log b$$ $$\mathbf{b}$$ $xyz = \mathbf{b}$ So general solution in $x^2 + y^2 + z^2 = f(xyz)$ (Ans) ## Engineering Mathematics - III ## Assignment ## **Solve the followings:** 1. $$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 10y = 6e^{4x}$$ $$2. \quad y \notin \emptyset + 3y \notin + 2y = 4 \cos^2 x$$ 3. $$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2 e^x$$ 4. $$(D^2 + a^2)y = k \cos(ax + b)$$ 5. $$(D-2)^2y = 8(e^{2x} + \sin 2x)$$ 6. $$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} - 6\frac{dy}{dx} = 1 + x^2$$ ## CHAPTER - 3 ## LAPLACE TRANSFORMS ## **GAMMA FUNCTION:** The grmma function is defined as $$\Gamma(n) = \grave{0}_{0}^{\infty} e^{-x} x^{n-1} dx, n > 0$$...(1) It defines a function of n for positive values of n. ## Value of G(1): We have, $$\Gamma = \begin{cases} (1) = \int_{0}^{\infty} e^{-x} x^{0} dx = \int_{0}^{\infty} e^{-x} dx & |e^{-x} = 0 \\ 0 & = -1 \end{cases}$$ Hence, G(1) = 1 ...(2) ## **Reduction formula for** G (n): We have, $$\Gamma(n+1) = \stackrel{\circ}{\mathbf{O}}_0 e^{-x} x^n dx \text{ [Integrating by parts]}$$ $$= |-x^n e^{-x}|_0^{\infty} + n \stackrel{\bullet}{\mathbf{O}}_0^{\infty} e^{-x} x^{n-1} dx = 0 + nG(n)$$ $$\setminus G(n+1) = n G(n), \qquad \dots(3)$$ which is the reducation formula for G(n). Using the reduction formula for G(n), we can write the value of G(n) in the form, $$\Gamma(n) = \frac{\Gamma(n+1)}{n} \tag{4}$$ Thus (1) and (4) together give a complete definition of G(n) defined for all values of n except when n is zero or a negative integer and its graph is as shown in the following figure. ## Engineering Mathematics – III ## VALUE OF G(n) IN TERMS OF FACTORIAL Using G(n + 1) = nG(n) successively, we get $$G(2)=G(1+1)=1\times G(1)=1!$$ $$G(3)=G(2+1)=2\times G(2)=2\times 1=2!$$ $$G(4)=G(3+1)=3\times G(3)=3\times 2!=3!$$ In general G(n + 1) = n!, provided n is a positive integer. Taking n = 0, it defines 0! = G(1) = 1 Thus, $$G(n + 1) = n!$$ (for $n = 0, 1, 2, 3...$)...(5) ## Value of G 1 2 We have, $$\stackrel{\text{\'e}}{\underset{\text{\'e}}{\text{G}_{\text{C}}}} \div \mathring{u} = \stackrel{\text{\'e}}{\underset{\text{\'e}}{\text{O}_{\text{O}}}} \stackrel{\text{\'e}}{\underset{\text{\'e}}{\text{O}_{\text{O}}}} \stackrel{\text{\'e}}{\underset{\text{\'e}}{\text{O}_{\text{O}}}} \stackrel{\text{\'e}}{\underset{\text{\'e}}{\text{O}_{\text{O}}}} dx dy \qquad [\text{Put } x = r \text{ cosq and } y = r \text{ sinq}]$$ Hence $${}^{G}_{\varsigma} \stackrel{\text{def}}{=} \frac{1}{\sqrt{p}} = 1.772$$(6) ## Example -1: ## **Solution:** $$\frac{\sum_{\substack{G \ \varsigma - + 1 \ \dot{\gamma} \times G \ \varsigma - + 1 \dot{\gamma} \times G \ \varsigma - + 1 \dot{\gamma} \times \sqrt{p}}}{\frac{\dot{\delta} 2 \quad \emptyset \quad \dot{\delta} 2 \quad \emptyset}{\hat{\delta} 2 \quad \emptyset \quad \dot{\delta} 2 \quad \emptyset}} = \frac{\sum_{\substack{A \ \zeta \cap \zeta - \dot{\gamma} \times \zeta \cap \zeta \cap \zeta \times \overline{\zeta} \times G \ \varsigma - \dot{\gamma} \times \overline{\zeta} \times \zeta \cap \zeta \cap \zeta \times \overline{\zeta} \overline{\zeta$$ ## Example -2: Evaluate G(-3.5) ## **Solution:** We know that, $$G(n) = \frac{G(n+1)}{n}$$ For all n expect n is zero or a negative integer. Now, we have, $$G(-3.5) = \frac{G(-3.5 + 1)}{-3.5} = \frac{G(-2.5)}{-3.5} = \frac{G(-2.5 + 1)}{(-3.5)(-2.5)} = \frac{G(-1.5)}{(3.5)(2.5)}$$ $$= \frac{G(-1.5 + 1)}{(3.5)(2.5)(-1.5)} = \frac{G(-0.5)}{(3.5)(2.5)(-1.5)} = \frac{G(-0.5 + 1)}{(3.5)(2.5)(-1.5)(-0.5)}$$ $$= \frac{G(0.5)}{(3.5)(2.5)(1.5)(0.5)} = \frac{\sqrt{p}}{(3.5)(2.5)(1.5)(0.5)} = 0.27$$ $$\setminus G(-3.5) = 0.27$$ Engineering Mathematics – III ## **Laplace transforms:** #### **Definition:** Let f(t) be a function of t defined for all positive values of t. Then the Laplace transforms of f(t), denoted by L $\{f(t)\}$ is defined by $$L\{f(t)\} = \grave{O}_0^{\infty} e^{-st} f(t) dt$$ Provided that the integral exists. s is a parameter which may be a real or complex number. L{f(t)} being clearly a function of s is briefly written as f(s). i.e., $$L\{f(t)\} = f(s)$$. This implies that, $f(t) = L^{-1} \{ \overline{f}(s) \}$ Then f(t) is called the inverse Laplace transform of f(s). The symbol L, which transforms f(t) into $f(\overline{s})$, is called the Laplace transformation operator. ## **CONDITIONS FOR THE EXISTENCE:** The Laplace transform of f(t) i.e.,
$\grave{O}_0 e^{-st} f(t) dt$ exists for s > a, if (i) f(t) is continuous and (ii) $\lim_{t \to \infty} \{e^{-a + t} f(t)\}\$ is finite. ## TRANSFORMS OF ELEMENTARY FUNCTIONS: The direct application of the definition gives the following formulae: (1) $$L\{1\} = \frac{1}{s} (s > 0)$$ (2) $$L\{t^n\} = \begin{cases} \frac{\hat{1}}{\hat{I}} \frac{n!}{s^{n+1}}, & \text{when } n = 0,1,2,3,\dots \\ \hat{1} \frac{G(n+1)}{s}, & \text{otherwise } (s > 0) \end{cases}$$ (3) $$L\{e^{at}\} = \frac{1}{s-a}$$ (s > a) (4) $$L \{ \sin at \} = \frac{a}{s^2 + a^2}$$ (s > 0) (5) $$L \{\cos at\} = \frac{s}{s^2 - a^2}$$ (s > 0) (6) $$L \{ \sin h \, at \} = \frac{a}{s^2 - a^2} \quad (s > |a|)$$ (7) $$L \{\cosh at\} = \frac{s}{s^2 - a^2} \quad (s > |a|)$$ ## PROOFS: (1) $$L\{1\} = \grave{o}_{0}^{\infty - st} .1.dt = \begin{vmatrix} -\underline{e}_{-st} \\ s \end{vmatrix}_{0}^{\infty} = \frac{1}{s}, \text{ if } s > 0$$ $=\frac{1}{e^{n+1}} \grave{O} e^{-p} \cdot p^n dp$ $$=\frac{G(n+1)}{n}$$, if $n > -1$ and $s > 0$ S_{n+1} If n is a positive integer, G(n + 1) = n!. Therefore, $L\{t^n\} = \frac{n!}{s^{n+1}}$, if s > 0 (3) $$L\{e^{at}\} = \overset{\infty}{\underset{0}{\text{o}}} e^{-st} \cdot e^{at} dt = \overset{\infty}{\underset{0}{\text{o}}} e^{-(s-a)t} dt = dt = \begin{bmatrix} e^{-(s-a)t} \\ -(s-a) \end{bmatrix}_{0}^{\infty} = \frac{1}{s-a}, \text{ if } s > a$$ (4) $$L\{\sin at\} = \overset{\circ}{\underset{0}{\overset{\circ}{\triangleright}}} e^{-st} \sin at dt = \left| \frac{e^{-st}}{s^2 + a^2} (-s \sin at - a \cos at) \right|_{0}^{\infty} = \frac{a}{s^2 + a^2}, \text{ if } s > 0$$ (5) $$L\left\{\cos at\right\} = \sum_{0}^{\infty} e^{-st} \cos at \, dt = \left|\frac{e^{-st}}{s^2 + a^2} \left(-s \cos at + a \sin at\right)\right|_{0}^{\infty} = \frac{s}{s^2 + a^2}$$, if $s > 0$ 1 $$\stackrel{\acute{e}_{\infty}}{=} \stackrel{-(s-a)t}{=} \stackrel{\circ}{=} \stackrel{\circ}{e} \stackrel{dt-\grave{o}e}{=} \stackrel{\circ}{=} \stackrel{dt-\acute{e}}{=} \stackrel{\circ}{=} \stackrel{-}{=} \stackrel{\circ}{=} \stackrel{-}{=} \stackrel{\circ}{=} \stackrel{-}{=} \stackrel{\circ}{=} \stackrel{\circ}{=}$$ $$\overset{\circ}{\mathbf{e}} \qquad \overset{\circ}{\mathbf{e}} \overset{\overset{\circ}{\mathbf{e}} \qquad \overset{\overset{\circ}{\mathbf{e}} \qquad \overset{\overset{\circ}{\mathbf{e}} \qquad \overset{\overset{\overset}{\mathbf{e}} \qquad \overset{\overset{\overset{\overset$$ $$\frac{1 \stackrel{\circ}{e} 1}{= -\hat{e} \frac{1}{-} + \frac{\hat{u}}{-} \stackrel{\circ}{u} = \frac{1}{2} \frac{1}{2}, \text{ for } s > |a|$$ $$2 \stackrel{\circ}{e} s - a \quad s + a \stackrel{\circ}{u} \quad s - a$$ ## PROPERTIES OF LAPLACE TRANSFORMS: #### 1. **LINEARITY PROPERTY:** If a, b, c be any constants and f, g, h any functions of t, then $L\{af(t) + bg(t) - ch(t)\} = aL\{f(t)\} + bL\{g(t)\} - cL$ {h(t)} By definition, L.H.S = $$\overset{\infty}{\mathbf{O}}e^{-st} [af(t) + bg(t) - ch(t)] dt$$ = $\overset{\infty}{\mathbf{O}}e^{-st} f(t) dt + \overset{\infty}{\mathbf{O}}e^{-st} g(t) dt - \overset{\infty}{\mathbf{O}}e^{-st} h(t) dt$ = $aL \{f(t)\} + bL \{g(t)\} - cL\{h(t)\}$ #### II. FIRST SHIFTING PROPERTY: If L $$\{f(t)\} = f(s)$$, then $$L \{e^{at} f(t)\} = \overline{f}(s-a)$$ By definition, $$L\{e^{at} f(t)\} = \overset{\circ}{o} e^{-st} e^{at} f(t) dt = \overset{\circ}{o} e^{-(s-a)t} f(t) dt$$ $$= \overset{\circ}{o} e^{-rt} f(t) dt, \text{ where } r = s - a = \overline{f}(r) = \overline{f}(s-a).$$ ## **APPLICATION OF FIRST SHIFTING PROPERTY:** $$(1) \quad \mathsf{L}\{e^{at}\} = \frac{1}{s-a}$$ (2) $$L\{e^{at}t^n\} = (s-a)^{n-1} \text{ when } n=1, 2, 3, \dots$$ (3) $$L\{e^{at} \sin bt\} = (s - a)^2 + b^2$$ (4) $$L\{e^{at}\cos bt\} = (s-a)^2 - b^2$$ (5) $$L\{e^{at} \sin h \text{ bt}\} = (s - a)^2 - b^2$$ 6) $$L\{e^{at}\cosh bt\} = (s - a)^2 - a$$ (6) b_2 where in each case > a. #### III. CHANGE OF SCALE PROPERTY: If L $$\{f(t)\} = f(s)$$, then $$L\{f(at)\} = \begin{cases} 1 & \text{if } s \text{ \"{o}} \\ -\frac{f_{\varsigma}}{f_{\varsigma}} - \div . \end{cases}$$ $$a & \text{è } a \text{ Ø}$$ By definition, $$L\{f(at)\} = \mathop{\grave{o}}\limits_{0}^{\infty} e^{-st} f(at) dt$$ $$\frac{\partial e}{\partial e} f(u) \overline{a} \qquad [put at = u dt = \frac{du}{a}]$$ $$\frac{1}{a} \sum_{0}^{\infty} \frac{1}{a} f(u) = \overline{a} \quad e^{-su/a} f(u) = \overline{a} \quad e^{-su/a} g$$ ## Example -3: Find the Laplace transform of e^{2t} (3 $t^5 - \cos 4t$). ## **Solution:** $$L\{e^{2t}(3t^5 - \cos 4t)\}\$$ $$= 3L\{e^{2t}t^5\} - L\{e^{2t}\cos 4t\}$$ $$= 3 \times \frac{5!}{(s-2)^6} - \frac{s-2}{(s-2)^2 + 4^2} = \frac{360}{(s2)^6} - \frac{s-2}{s^2 - 4s + 20}$$ ## Example -4: Find the laplace transform of $e^{-t} \sin^2 3t$ ## **Solution:** We have $$L\{\sin^{2}3t\} = \frac{1}{2} L\{1-\cos 6t\} = \frac{1 \cdot 61}{2} \frac{s \cdot \hat{u}}{2} \frac{18}{s \cdot s + 6 \cdot \hat{u}} = \frac{18}{s \cdot (s + 36)} = \overline{f(s)}$$ ## Example -5: Find the laplace transform of $e^{-3t} \sin 5t \sin 3t$. ## **Solution:** We have, L{sin 5t sin 3t} = $\frac{1}{2}$ L{cos2t - cos8t} $$\frac{1 \cdot \acute{e} \quad s}{2 \cdot \ddot{e}s + 2} - \frac{s \quad \grave{u}}{2 \cdot 2} \cdot \frac{30s}{2} = f(s) .$$ By first shifting property, we get Engineering Mathematics – III $$L\{e^{-3t} \sin 5t \sin 3t\} = f^{-}(s+3)$$ $$= \frac{30(s+3)}{\{(s+3)^{2}+4\}\{(s+3)^{2}+64\}} = \frac{30(s+3)}{\{s^{2}+6s+13\}\{s^{2}+6s+73\}}$$ ## Example -6: Find the laplace transform of e^{-2t} (2 t - 3 / t) ## **Solution:** We have By first shifting property, we get $$L\{e^{-2t} \left(\frac{2}{\sqrt{t}} - \frac{3}{\sqrt{t}} \right) = f(s+2)$$ $$= \frac{p}{\sqrt{s+2}} \sqrt{s+2} \sqrt{s+2} \sqrt{s+2} \sqrt{s+2} \sqrt{s+2} - 3p$$ ## Example -7: $$\hat{i} \sin at \, \hat{u}$$ $\frac{\hat{i} \sin t \, \hat{u}}{\hat{f} + \hat{f}} = \frac{1}{t} \hat{g}$, given that $\hat{i} = \hat{f} + \hat{g} = \hat{g} + \hat{g} = \hat{g} + \hat{g} + \hat{g} = \hat{g} + \hat{g} + \hat{g} + \hat{g} = \hat{g} + \hat{g}$ ## **Solution:** î ## LAPLACE TRANSFORMS OF DERIVATIVES: (1) $f \notin (t)$ be continuous and $L\{f(t)\} = \overline{f}(s)$, then $L\{f \notin (t)\} = sf(s) - f(0)$. **Proof:** We have $$L\{f \phi(t)\} = \mathbf{\hat{O}}_0^{\infty} e^{-st} f \phi(t) dt$$ $$= |e^{-st} f(t)|^{\infty}_0 - \mathbf{\hat{O}}_0^{\infty} (-s) e^{-st} \cdot f(t) dt$$ Now assuming f(t) be such that $\lim_{t \to t} e^{-st} f(t) = 0$, we have $$L\{f \phi(t)\} = -f(0) + s \grave{O}_0^{\infty} e^{-st} f(t) dt$$ Thus, $L\{f \phi(t)\} = s \overline{f} - f(0)$ (2) If $f \notin (t)$ and its first (n-1) derivatives be continuous, then $$L\{f^{n}(t)\} = s^{n-1}f(s) - s^{n-1}f(0) - s^{n-2}f \phi(0) - \dots - f^{n-1}(0)$$ Thus, $$L\{f^{2}(t)\} = s^{2}\overline{f}(s) - sf(0) - f\varphi(0)$$ $$L\{f^{2}\varphi(t)\} = s^{3}f(s) - s^{2}f(0) - sf\varphi(0) - f^{2}(0)$$ $$L\{f^{iv}(t)\} = \overline{s}^{4}f(s) - s^{3}f(0) - s^{2}f\varphi(0) - sf^{2}(0) - f^{2}\varphi(0)$$ and so on. ## **Laplace transforms of integrals:** **Proof:** Let $$f(t) = \overset{\circ}{O}_0^t f(u) du$$, then $f\phi(t) = f(t)$ and $f(0) = 0$ $$\downarrow L \{f\phi(t)\} = s \qquad f(s) - f(0)$$ or $L\{f(t)\} = s f(s)$ or $f(s) = s f(s)$ or $f(s) = \frac{1}{f}(s)$ $$s$$ Hence, $L \{\overset{\circ}{O}_0^t f(u) d\overline{u}\} = \overset{1}{s} f(s)$. Engineering Mathematics – III ## **Multiplication By t**ⁿ: If $$L\{f(t)\} = f(s)$$, then $$L\{t^n f(t)\} = (-1)^n \frac{s^n}{ds^n} \oint_{\ddot{c}} f(s) \hat{u}, \text{ where } n = 1, 2, 3....$$ ## Division By t: ## Example –8: Find the laplace transforms of - (1) t sin at - (2) t cos at ## **Solution:** (1) We have, L $$\{\sin at\} = s \frac{a}{2 + a^2}$$ \ddot{o} \acute{e} \ddot{u} \ddot{c} Hence $$\{t \sin at\} = (\overline{s^2 + a^2})^2$$ (2) We have, $$L\{\cos at\} = \frac{s}{s^2 + a^2}$$ Hence, L $$\{t \cos at\} = \frac{s^2 - a^2}{(s^2 + a^2)^2}$$ ## Example -9: Find the laplace transforms of t² cos at. ## **Solution:** We have, L {cos $$at$$ } = $\frac{s}{s \frac{2}{d} \div a^2}$ $$\langle L\{t_2 \cos at\}\} = (-1)^2 - \underbrace{\frac{s}{s + a \hat{u}}}_{2} \underbrace{\hat{u}}_{2}$$ $$= \frac{d}{6} \frac{6}{8} \frac{a^2 - s^2 \hat{u}}{6} \frac{ds}{\hat{u}}$$ $$= \frac{-2s(s^2 + a^2)^2 \hat{u}}{(s^2 + a^2)^4}$$ $$= \frac{-2s(s^2 + a^2)^2 - 2(a^2 - s^2) \cdot 2s(s^2 + a^2)}{(s^2 + a^2)^4}$$ $$= \frac{-2s(s^2 + a^2) + 4s(s^2 - a^2)}{(s^2 + a^2)^3} = \frac{2s(s^2 - 3a^2)}{(s^2 + a^2)^3}$$ ## **Example – 10:** Find the laplace transforms of $$\underbrace{\left(\boldsymbol{\varrho}_{-at} - \boldsymbol{\varrho}_{-bt}\right)}_{t}$$ ## **Solution:** ## Example - 11: ## **Solution:** We have, L î $$\frac{i}{1} \frac{e^{at} - \cos bt}{t} \ddot{u} = \mathring{0} \hat{e} \frac{1}{s - a} - \frac{s}{s + b} \mathring{u}$$ $$\ddot{i} \left(e_{at} - \cosh t \right) \ddot{i} \ddot{u} = \mathring{0} \hat{e} \frac{1}{s - a} - \frac{s}{s + b} \mathring{u}$$ $$\downarrow L \underbrace{i}_{\ddot{i}} \underbrace{t}_{\ddot{i}} = \mathring{0} \hat{e} \frac{1}{\ddot{s} - a} - \frac{s}{s + b} \mathring{u} \frac{\dot{u}}{\dot{u}}$$ $$\dot{i} \qquad \dot{i} \qquad$$ ## **INVERSE LAPLACE TRANSFORMS:** We know that if $\{f(t)\} = \overline{f(s)}$, then $L^{-1}\{\overline{f(s)}\} = f(t)$ Let us now determine the inverse Laplace transforms of some given function of s. $\hat{1}s - a + b = a$ (8) $$\begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & L & i & \frac{2}{2} & \frac{2}{2} \circ \\ & & \hat{1} s & -a & b \end{array}$$ (9) $$L_{1}^{-1} \frac{1}{e^{-\frac{1}{2}}} \frac{\ddot{u}}{2} \frac{1}{2} \frac{at}{e} \sin bt$$ $$\hat{h}_{1} (s - a_{S})_{-\frac{1}{d}} b \quad h_{\ddot{u}} = b_{e^{at}} \cos bt$$ $$= e^{at} \cos bt$$ (10) $$L \stackrel{\circ}{i} \frac{2}{(s-a)} \stackrel{\circ}{y}$$ $$\stackrel{\circ}{i} \left(s-a\right) + b \stackrel{\circ}{b}$$ $$\stackrel{-1}{i} \stackrel{\circ}{s} \stackrel{\circ}{u} \stackrel{1}{1}$$ $$L \stackrel{\circ}{i} \frac{2}{2} \stackrel{2}{2} \stackrel{\circ}{y} \stackrel{\circ}{=} -t \sin at$$ (11) $$L \circ \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}
\cdot \sin at$$ $$\hat{1}(s + a) \Rightarrow 2a$$ (12) $$\int_{L}^{-1} i \frac{1}{2} \frac{i}{2} \frac{1}{2} y = \frac{1}{3} (\sin at - at \cos at)$$ $$i (s + a) b = \frac{1}{2a}$$ ## INVERSE LAPLACE TRANSFORMS BY THE METHOD OF PARTIAL FRACTIONS: We have seen that $L\{f(t)\}$ in many cases, is a rational algebraic function of s. Hence to find the inverse laplace transforms of f(s), we first express the given function of s into partial fractions which will, then, be recognizable as one of the above mentioned standard forms. ## **Example – 12:** $$s^2 + s + 2$$ Find the inverse laplace transform of $(s+1)^2 \overline{(s-3)}$. #### **Solution:** Suppose that, $$\frac{s^2 + s + 2}{(s+1)^2 (s-3)} = \underbrace{A}_{(s+1)} + \underbrace{B}_{(s+1)^2} + \underbrace{C}_{(s-3)}$$(1) Multiplying both sides of (1) by $(s + 1)^2$ (s - 3), we get $s^2 + s + 2 = A(s+1)(s-3) + B(s-3) + C(s+1)$...(2) 1) 2 Putting $s = -1$ $$_{2=-4B} p_{B=-\frac{1}{2}}$$ Putting s = 3 Equating co-efficient of s^2 , we get Putting the values of A, B, C in (1) we get ## Example -13: Find the inverse laplace transforms of $(s-2)(s^2+9)$ #### **Solution:** Suppose that, $$\frac{s}{(s-2)(s+9)} = \frac{Bs+C}{s+2} \qquad ...(1)$$ Multiplying both sides by $(s - 2) (s^2 + 9)$, we get $$S = A (s^2 + 9) + (Bs + C) (s - 2)$$...(2) 2 Putting s = 2, 2 = 13A $$\not = A = \overline{13}$$ 9 Putting $$s = 0$$, $0 = 9A - 2c PC = \overline{13}$ Equating co-efficient of s², we get $$0=A+BPB=-\frac{2}{13}$$ Putting the values of A, B, C in (1), we get $$\frac{s}{(s-2)(s^2+9) \cdot 13 \cdot s - 2 \cdot 13 \cdot (s^2+9) \cdot 13 \cdot (s^2+9)}$$ ## OTHER METHODS OF FINDING INVERSE LAPLACE TRANSFORMS: (I) SHIFTING PROPERTY: If $$L^{-1}$$ { $\overline{f}(x)$ } = $f(t)$, then $$L^{-1} \{ \overline{f}(s-a) \} = e^{at} f(t) = e^{at} L^{-1} \{ \overline{f}(s) \}$$ (II) If $L^{-1} \{ \mathcal{F} (s) \} = f(t) \text{ and } f(0) = 0, \text{ then } L-1 \{ s. \mathcal{F} (s) \} = \frac{d}{dt} f(t).$ In general, L-1 {sⁿ f(s)} = \overline{dt}_n {f(t)}, Provided $f(0) = f \notin (0) = \dots = f^{n-1}(0) = 0$. $$-\begin{cases} (s) = f(t), \text{ then } L \end{cases} = \begin{cases} 1 & \text{if } f(s) \text{ if } f(t) = 0. \end{cases}$$ (IV) If $L^{-1} \{f(s)\} = f(t)$, then $t \cdot f(t) = L^{-1} \hat{i} - \underline{d} f^{-s} \hat{u}$ $$if(t)\ddot{u} =$$ (V) If $$f(t) = L^{-1} \{f(s)\}$$, then $L(s) = \hat{O}_s \hat{o}_f(s) ds$. This formula is useful in finding f(t) when f(s) is given. **Example – 14:** Find the inverse Laplace transform of tan $$^{-1}$$ $^{\circ}$ **Solution:** $$\begin{array}{ccc} \hat{1} & -1 & \approx 2 & \ddot{0} \ddot{u} \\ \text{Let } L^{-1} & f^{\tan} & \varphi & = \dot{\varphi} & = f(t) \\ \hat{1} & & \grave{e} & s & \emptyset \\ \bullet & L & \{f(t)\} = \tan^{-1} & \varphi - \dot{\varphi} = \mathcal{F}(s) \\ & & \grave{e} & s & \emptyset \end{array}$$ Then by formula IV we get, $$L \{t. f(t)\} = -\frac{d}{-\frac{e\ddot{e}f(s)}{ds}} = -\frac{d\acute{e}}{-\frac{e}{e}} + \frac{d\acute{e}}{-\frac{e}{e}} = -\frac{e}{e} + \frac{1}{e} + \frac{e}{e} = -\frac{e}{e} + \frac{1}{e} + \frac{e}{e} + \frac{2\dot{u}}{e} = -\frac{e}{e} + \frac{2\dot{u}}{e} + \frac{2\dot{u}}{e} = -\frac{e}{e} + \frac{2\dot{u}}{e} + \frac{2\dot{u}}{e} + \frac{2\dot{u}}{e} = -\frac{2\dot{u}}{e} + \frac{2\dot{u}}{e} \frac{$$ $$P tf(t) = L^{-1} i 2 \ddot{u} = \sin 2t$$ $$i \frac{1}{2} \dot{y}$$ $$i s + 4 b$$ $$\sin 2t$$ $$\mathbf{p} \quad f(\mathbf{t}) = \frac{\sin 2t}{t}$$ ## **Example – 16:** Find the inverse Laplace transform of log ç ## **Solution:** $$P L \{f(t)\} = \log \varsigma \qquad \frac{\text{æ } S \ddot{O}}{\overset{\cdot}{} + 1 \not O} \div = f (s)$$ Then by formula IV we get, $$\frac{-d}{s} \stackrel{\text{\'e}}{\log} \frac{s}{s} \stackrel{\text{\"ou}}{=} \frac{-d}{s} \stackrel{\text{\'e}}{\log} s - \log (s + 1) \stackrel{\text{\'e}}{u}$$ $$\frac{ds}{\ddot{e}} \stackrel{\text{\'e}}{=} s + 1 \stackrel{\text{\'e}}{u} \stackrel{\text{\'e}}{u} \frac{1}{s} \stackrel{\text{\'e}}{=} \stackrel{\text{\'e}}$$ $$\mathbf{P} \quad f(t) = \underbrace{e^{-t} - 1}_{t}$$ $$- \hat{\mathbf{i}} \quad * s \quad \ddot{\mathbf{o}}\ddot{\mathbf{u}} \quad (e^{-1} \quad -1)$$ $$\cdot \int_{L \text{ flog } \varsigma}^{1} \frac{1}{\hat{\mathbf{e}} \cdot s + 1} \not = \underbrace{t}$$ ## **Example – 17:** Find the inverse Laplace transform of $s_2(s_2 + a_2)$. ## **Solution:** We have $$\begin{array}{ccc} \overset{\mathbf{i}_{\mathsf{T}}}{\text{i}} & 1 & \overset{\mathbf{i}_{\mathsf{T}}}{\text{i}} = 1 \\ \overset{\mathsf{f}}{\text{i}} & (s^2 + a_2) & \overset{\mathsf{f}}{\text{i}} = \frac{1}{a} \\ & & & & & & \\ & & & & & \\ \end{array} \quad \text{sin at} = f(\mathsf{t}).$$ Then by Formula III we get, Thus we have, $$\frac{1}{1} \frac{1}{1} \frac{\ddot{u}}{1} = \frac{1}{1} \cdot 1 - \cos at \ dt$$ $$\frac{1}{1} \cdot s_{2} \left(s_{2} + a_{2} \right) \ddot{y} = \frac{1}{1} \cdot 1 - \cos at \ dt$$ $$\frac{1}{1} \cdot s_{2} \left(s_{2} + a_{2} \right) \ddot{y} = \frac{1}{1} \cdot 1 - \cos at \ dt$$ $$\frac{1}{1} \cdot s_{2} \left(s_{2} + a_{2} \right) \ddot{y} = \frac{1}{1} \cdot 1 - \cos at \ dt$$ $$\frac{1}{1} \cdot s_{2} \left(s_{2} + a_{2} \right) \ddot{y} = \frac{1}{1} \cdot 1 - \cos at \ dt$$ $$\frac{1}{2} \cdot \dot{e} \cdot 1 + \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot \dot{e} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ $$\frac{1}{2} \cdot \dot{e} \cdot t - \frac{\dot{u}}{1} \cdot 1$$ ## **Example – 18:** Find the inverse Laplace transform of $$\frac{1}{s^2s+5}$$ ## **Solution:** we have, L $$\begin{array}{ccc} -1 & \mathbf{\hat{i}} & \mathbf{1} & \mathbf{\ddot{u}} & -5t \\ \mathbf{\acute{i}} & & \mathbf{\acute{y}} = e & = f(t). \end{array}$$ Then by Formula III, we get Thus we have, $$=\frac{1}{5} \stackrel{\acute{e}}{e} + \frac{1}{5} e^{-5t} - \frac{1}{5} \stackrel{\grave{u}}{u}$$ $$= \frac{1}{5} \stackrel{\acute{e}}{e} e^{-5t} + 5t - 1 \stackrel{\grave{u}}{u}$$ $$= \frac{1}{5} \stackrel{\acute{e}}{e} e^{-5t} + 5t - 1 \stackrel{\grave{u}}{u}$$ ## **Example – 19:** Find the inverse Laplace transform of $\frac{s^2}{(s^2 + a^2)^2}$ ## **Solution:** We have, Since f(0) = 0, we get from Formula II that, ## Example -20: $$s+3$$ Find the inverse Laplace transform of $(s_2 + 6s + 13)^2$. #### **Solution:** We have, $$\frac{s+3}{(s+3)^{\frac{1}{2}}} = \frac{s+3}{(s+3)^{\frac{1}{2}}} \frac{s+3}{$$ Then by formula I we get $$L = \frac{1}{1} \frac{1}{1} \frac{s+3}{s+3} = \frac{1}{2} \frac{1}{3} \frac{1}{1} \frac{s+3}{s+3} = \frac{1}{1} \frac{1}{1} \frac{s+3}{s+3} = \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{s+3}{s+3} = \frac{1}{1} \frac{$$ ## Example -21: Find the inverse Laplace transform of $\frac{s}{(s^2 + a^2)^2}$. #### **Solution:** Let, $$f(t) = L^{-1}$$ $$\begin{array}{cccc} & & & \ddot{i} & & \ddot{i} \\ & & & \ddot{i} & & \ddot{j} \\ & & & & \ddots & \ddot{j} \\ & & & & & \ddots & \ddot{j} \\ & & & & & & \ddots & \ddot{j} \\ & & & & & & & & \ddot{i} \end{array}$$ Then by formula V we get Then by formula $$\mathbf{v}$$ we get $$\frac{\mathbf{i}f}{L} \underbrace{(t)}_{\hat{\mathbf{y}}\hat{\mathbf{o}}_{s}}^{\mathbf{i}} \underbrace{f}(s) ds = \hat{\mathbf{o}}_{s} \underbrace{\frac{s}{2}}_{2} \underbrace{\frac{1}{2}}_{2} \underbrace{\frac{s}{2}}_{2} ds = \frac{1}{\hat{\mathbf{o}}_{s}} \underbrace{\frac{2s}{2}}_{2} \underbrace{\frac{2s}{2}}_{2} ds$$
$$\mathbf{i} t \mathbf{b} \underbrace{\left(s + a\right)}_{\hat{\mathbf{v}}} \underbrace{2 \cdot \left(s + a\right)}_{2} \underbrace{\left(s + a\right)}_{2} \underbrace{\left(s + a\right)}_{2} \underbrace{\frac{1}{6}}_{2} \underbrace{\frac{1}{2}}_{2} \underbrace{\frac{1}{6}}_{2} \underbrace{\frac{1}{2}}_{2} \underbrace{\frac{1}{6}}_{2} \underbrace{\frac{1}{2}}_{2} \underbrace{\frac{1}{3}}_{2} \underbrace{\frac$$ # LAPLACE TRANSFORM METHOD TO SOLVE LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS ASSOCIATED WITH INITIAL **CONDITIONS:** Linear differential equations with constant coefficients associated with initial conditions can be easily solved by Laplace transform method. #### **Working Procedure:** - **Step 1:** Take the Laplace transform of both sides of the differential equation and then put the given initial conditions. - **Step 2:** Transpose the terms with minus signs to the right. - **Step 3:** Divide by the co-efficient of $\frac{1}{y}$, getting $\frac{1}{y}$ as a known function of s. - Resolve this function of s into partial fractions. **Step - 5:** - Step -5: Take the inverse Laplace transform of both sides. This gives y as a function of t which is the desired solution satisfying the given conditions. ## Example -22: Solve the following equation by transform method; $$y^2 - 3y + 2y = e^{3t}$$, when $y(0) = 1$ and $y \neq (0) = 0$. #### **Solution:** We have, $$y^2 - 3y \notin +2y = e^{3t}$$...(1) Taking Laplace transform of both sides of (1), we get $$L \{y^2\} = 3L \{y^2\} + 2L \{y\} = L \{e^{3t}\}$$ $$P [s^2y - sy(0) - y \phi(0)] - 3[sy - y(0)] + 2y = \frac{1}{s-3}$$ Putting y(0) = 1 and $y \neq (0) = 0$, we get $$s^2 \overline{y} - s - 3s \overline{y} + 3 + 2 \overline{y} = \frac{1}{s - 3}$$ $$\mathbf{P}$$ $\overline{y}.(s2 - 3s + 2) = + s - 3 = \frac{1 + (s - 3)^2}{s - 3}$ $$P = \frac{s^2 - 6s + 10}{\left(s - 3\right)\left(s^2 - 3s + 2\right)}$$ $$P = \frac{s^2 - 6s + 10}{(s - 3)(s - 1)(s - 2)} \dots (2)$$ Let, $$\frac{s^2 - 6s + 10}{(s - 3)(s - 1)(s - 2)} = \frac{A}{s - 3} + \frac{B}{s - 1} + \frac{C}{s - 2}$$ Multiplying both sides of (3) by (s-3) (s-1) (s-2), we get $$s^2 - 6s + 10 = A(s-1)(s-2) + B(s-3)(s-2) + C(s-3)(s-1)$$...(4) Putting s = 1, B = 2 Putting s = 2, C = -2 Putting s = 3, A = 2 Substituting the values of A, B, C in (3), we get $$\frac{1}{y} = 2 \cdot \frac{1}{(s-3)} + \frac{5}{2} \cdot \frac{1}{(s-1)} - 2 \cdot \frac{1}{(s-2)}$$ Taking inverse Laplace transform of both sides, we get Taking inverse Laplace transform of both sides, we g $$\frac{1}{L \{y\}} = \frac{1}{2} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{\ddot{u}}{s-3 \dot{b}} + \frac{5}{2} \frac{1}{1} \frac{1}{1} \frac{\ddot{u}}{s-1 \dot{b}} - \frac{1}{2} \frac{1}{1} \frac{1}{s-2 \dot{b}} \frac{\ddot{u}}{1} \frac{1}{s-2 \dot{b}}$$ $$\frac{1}{2} \frac{1}{2} \frac{1}{s-2 \dot{b}} + \frac{5}{2} \frac{1}{1} \frac{1}{s-2 \dot{b}} \frac{\ddot{u}}{1} \frac{1}{s-2 \dot{b}} = \frac{1}{2} \frac{1}{2} \frac{1}{s-2 \dot{b}} \frac{\ddot{u}}{1} \frac{1}{s-2 \dot{b}} = \frac{1}{2} \frac{1}{s-2 \dot{b}} \frac{\ddot{u}}{1} \frac{\ddot{u}}{$$ This is the required solution. ## Example -23: Solve the following equation by transform method; $$(D^2 + w^2)$$ y = cos wt, t > 0, given that y = 0 and Dy = 0 at t = 0 #### **Solution:** We have $$(D^2 + w^2) y = \cos wt$$ i.e., $$y^2 + w^2y = \cos wt$$, given $y(0) = y\phi(0) = 0$ Taking Laplace transform of both sides of (1), we get $$L \{y^2\} + w^2 L\{y\} = L \{\cos wt\}$$ $$\mathbf{P} \quad S^{2} \ \overline{y} \ -sy(0) - y \ \phi(0) + w2 \ y^{-} \ = \frac{s}{s} \frac{2}{s + \omega}$$ Putting (0) = 0 and $y \notin (0) = 0$, we get $$\overline{y} \cdot (s^2 + w^2) = \frac{s}{2}$$ $$\overline{y} \cdot (s^2 + w^2) = \frac{s}{s + \omega} \qquad \dots (2)$$ $$\overline{y} = \frac{s}{\left(s_2 + \omega_2\right)}$$ Taking inverse Laplace transform, we get $$L_{-1} \left\{ y \right\} L^{-1} = \frac{s}{\left(s_2 + \omega_2 \right)^2}$$ $y = 2\omega \cdot t \sin wt$ This is the required solution. # Assignment 1. Find the Laplace transforms of the following: 2. Find the Laplace Transform of f(t) in each of the following: Rsin 2 t, when $$0 < t \le \pi$$ (a) $f(t) = S$ (b) $T = S$ (c) $f(t) = S$ (d) $f(t) = S$ (e) $f(t) = S$ (function of the context o 3. Obtain the inverse Laplace transforms of the following functions (a) $$\frac{2s^2 - 6s + 5}{s^3 - 6s^2 + 11s - 6}$$ (b) (b) $\frac{a(s^2 - 2a^2)}{s^4 + 4a^4}$ (c) $\frac{s}{s^2 + 6s + 13}$ (d) $\log \frac{r}{g} \frac{J}{H + s} K$ # CHAPTER - 4 # **FOURIER SERIES** #### **Periodic Functions:** If the value of each ordinate f(t) repeat it self at equal interval in the abscissa, then f(t) is said to be a periodic function. If $$f(t) = f(t + T) = f(t + 2T) =$$, then T is called period of the function f(t). For example $$\sin x = \sin (x + 2p) = \sin (x + 4p) = \dots$$ So $\sin x$ is called a periodic function of period 2p ## **Founier Series:** A series of sines and cosines of an angle and its multiple of the form $$\frac{a0}{2} + a \cos x + a \cos 2x + \dots + a \cos nx + \dots$$ $$+ b_1 \sin x + b_2 \sin 2x + \dots + b_n \sin nx + \dots$$ $$= \underbrace{a0}_{n} + \mathbf{\mathring{a}} a_n \cos nx + \mathbf{\mathring{a}} b_n \sin nx$$ $$= \underbrace{a0}_{n=1} + \mathbf{\mathring{a}} a_n \cos nx + \mathbf{\mathring{a}} b_n \sin nx$$ is called a fouries series, there a_0 , a_n & b_n are called fourier constants **Useful Integrals** The following integrals are usful in Fourier series: 1. $$\grave{O}_{\alpha} \sin nx \, dx = 0$$ $$2. \grave{O}_{\alpha} \cos nx \, dx = 0$$ 3. $$\grave{O}_{\alpha}^{\alpha+2\pi} \sin^2 nx dx = p$$ $$\hat{O}_{\alpha}^{\alpha+2\pi} \sin^2 nx dx = p$$ 4. $\hat{O}_{\alpha}^{\alpha+2\pi} \cos^2 nx dx = p$ $$\mathbf{5.} \qquad \mathbf{\hat{O}} \alpha^{\alpha + 2 \pi} \sin nx. \sin mx dx = 0$$ **6.** $$\grave{O}_{\alpha}^{\alpha+2\pi} \cos nx. \cos mx dx = 0$$ $$\partial_{\alpha_{\alpha+2\pi}} \sin nx. \cos mx dx = 0$$ **8.** $$\partial_{\alpha}^{\alpha+2\pi} \sin nx$$. $\cos nx dx = 0$ **9.** $$\partial uv = uv_1 - u \phi v_2 + u^2 v_3 - \dots$$ where $$v_1 = \grave{0} v dx$$, $v_2 = \grave{0} v_1 dx$, $v_3 = \grave{0} v_2 dx$ $u \notin = \frac{du}{dx}$, $u^2 = \frac{d^2u}{dx^2}$ & **10.** $\sin np = 0 \& \cos np = (-x)$ where $n \hat{I} I$ Let f(x) be represented in the interval (a, a + 2p) by fourier series $$f(x) = \frac{a_0}{2} + \mathop{\mathbf{a}}^{\infty} a_n \cos nx + \mathop{\mathbf{a}}^{\infty} b_n \sin nx \qquad \dots (1)$$ To find a_0 : Integrate both sides of equation (1) form x = a to x = 1 + 2p. Then $$\overset{\alpha+2\pi}{\grave{O}} = \frac{1}{a} \overset{\alpha+2\pi}{\diamond} \overset{\alpha+2\pi}{\diamond} \overset{\alpha+2\pi}{\diamond} \overset{\alpha}{\diamond} \overset{\alpha}{\diamond} \overset{\alpha}{\diamond} \overset{\alpha}{\diamond} \overset{\alpha+2\pi}{\diamond} \overset{\alpha}{\diamond} \overset{\alpha}{\diamond}$$ Hence $$a_0 = \int_0^{\alpha+2\pi} f(x) dx$$ $a_n + - f(x) \cos nx dx$ **To find a_n:** Muliply $\cos nx \ a_n$ both sides of equation (1) and integrate from x=2 to x=2+ 2R, Then **To find b_n:** Multiply $\sin nx$ on both sides of equation (1) and intergrate from x = p to x = p + 2p, then $$\overset{\alpha_{+} 2\pi}{\grave{O}_{\alpha}} f(x) \sin nx dx = \underbrace{\begin{array}{cccc} a & 2+\pi \\ & & \\$$ Hence $$b_n = \int_{-\infty}^{\infty} f(x) \sin nx dx$$ Making a = 0, the interval becomes 0 < x < p and the formula (1) reduces to $$a_0 = \frac{1}{\delta} \int_0^{2\pi} f(x) dx$$ $$a_n = \int_0^{2\pi} \int_0^{2\pi} f(x) \cos nx dx$$ $$a_n = \int_0^{2\pi} \int_0^{2\pi} f(x) \sin nx dx$$ $$a_n = \int_0^{2\pi} \int_0^{2\pi} f(x) \sin nx dx$$ $$a_n = \int_0^{2\pi} \int_0^{2\pi} f(x) \sin
nx dx$$ Putting a = -p, The interval becomes -p < x < p, the formula (I) reduces to $$a_{0} = \frac{1}{p} \hat{o}_{-\pi} f(x) dx \qquad \ddot{i}$$ $$a \qquad 1 \qquad \ddot{i}$$ $$a \qquad 1 \qquad \ddot{i}$$ $$a \qquad p = \hat{o}_{-\pi} f(x) \cos nx dx \acute{y} \qquad(iii)$$ $$b_{n} = \frac{1}{p} \hat{o}_{-\pi} \qquad f(x) \sin nx dx \qquad \ddot{i}$$ $$p \hat{o}_{-\pi} \qquad p$$ #### Euler's Formula: The fourier series for the function f(x) in the interval p < x < p + 2p is given by $$f(x) = \frac{a_0}{2} + \mathring{\mathbf{a}} a_n \cos nx + \mathring{\mathbf{a}} b_n \sin nx$$ $$2 \qquad n = 1 \qquad \qquad n = 1$$ where $a_0 = \frac{1}{2} \qquad f(x) dx$ $$a = \frac{1}{2\pi} \qquad f(x) \cos nx dx$$ $$a = \frac{1}{2\pi} \qquad f(x) \sin nx dx$$ $$b = \frac{1}{2\pi} \qquad f(x) \sin nx dx$$ The value of a_0 , a_n & b_n are known. Euler's formula. ## Example -1: Given that $f(x) = x + x^2$ for -p < x < p, find the Fourier expansion of f(x). Hence that $\frac{\pi^2}{-p} = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$ #### **Solution:** Substituting the values of a_0 , a_n & b_n is equation (1) Put x = p in equation (2) $$p+p \stackrel{2}{=} \frac{p^{2}}{3} \stackrel{\acute{e}}{=} \frac{1}{4} \stackrel{1}{e^{1}} + \stackrel{1}{\longrightarrow} _{2} + \stackrel{1}{\longrightarrow} _{2} + \stackrel{1}{\longrightarrow} _{2} + \stackrel{1}{\longrightarrow} _{2} + \dots ... \acute{u} \qquad ... (3)$$ Put x = -p in equation (2) $$-p + p^{2} = \frac{p^{2}}{3} \stackrel{\text{\'e}}{=} \frac{1}{6} \frac{1}{1} \frac{1}{1} \qquad \mathring{u} \qquad \mathring{u} \qquad \mathring{$$ Adding equation (3) & (4) $$\begin{array}{c} {}_{2} p = \frac{2 \, p^{2}}{3} + 8 \, {}_{\hat{e}} 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} & \overset{\hat{u}}{\underset{-}{u}} \\ 3 & \overset{\hat{e}}{e} & 2 & 3 & 4 & \overset{\hat{u}}{u} \\ \hline \frac{4 \, p^{2}}{3} & \overset{\hat{e}}{e} & 1 & 1 & 1 & \overset{\hat{u}}{u} \\ \hline \frac{3}{p} & \overset{\hat{e}}{e} & 2 & 3 & 4 & \overset{\hat{u}}{\underset{-}{u}} \\ p^{2} & \overset{\hat{u}}{1} & \overset{1}{1} & \overset{1}{1} & \overset{\hat{u}}{\underset{-}{u}} \\ \hline \frac{-}{e} = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots = \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ \frac{2}{3} & \overset{\hat{u}}{\underset{-}{u}} = 1 + \overset{\hat{u}}{\underset{-}{u}} \\ - \frac{1}{3} & \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ - \frac{1}{3} & \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ - \frac{1}{3} & \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ - \frac{1}{3} & \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ - \frac{1}{3} & \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ - \frac{1}{3} & \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ - \frac{1}{3} & \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ - \frac{1}{3} & \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ - \frac{1}{3} & \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ - \frac{1}{3} & \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} + \overset{\hat{u}}{\underset{-}{u}} \\ + \overset{\hat{u}}{\underset{-}{u}} \\ + \overset{\hat{u}}{\underset{-}{u}} \overset{\hat{u}}$$ ## **Dirchelet's Condition:** Any function f(x) can be developed as a fourier series $\frac{a_0}{2} + \overset{\circ}{a} a_n \cos nx + \overset{\circ}{a} b_n \sin nx$ where a_0 , a_n , b_n are constants provided. - (i) f(x) is periodic, single valued and finite - (ii) f(x) has a finite no. of discontinuities in any one period - (iii) f(x) has at most a finite no. of maxima and minima. **Discontinuous Functions :** At a point of discontinuty, Fourier series gives the value of f(x) as the arithmetic mean of left and right limits. At a point of discontinuty, x = c $$f(x) = \frac{1}{0} [f(c-0) + f(c+$$ #### Example -2: Find the fourier series expansion for $$f(x), \text{ if } f(x) = 1$$ $$\hat{f}(x), \text{ if } f(x) = 1$$ $$\hat{f}(x), \quad 0 < x < p$$ $$1 \quad 1 \quad 1 \quad p^2$$ $$1 \quad 3 \quad 5 \quad 8$$ #### **Solution:** Let $$f(x) = \frac{\underline{a_0}}{z} + \mathring{\overset{\circ}{a}} a_n \cos nx + \mathring{\overset{\circ}{a}} b_n \sin nx \dots (1)$$ then $$a_0 = \begin{cases} \frac{1}{2} \notin 0 \\ 0 \\ 0 \\ -\pi \end{cases} (-p) dx + \delta_0 x dx \hat{\mathbf{u}} \end{cases}$$ $$p \quad \hat{\mathbf{e}} \qquad \hat{\mathbf{u}} \qquad$$ Substituting the values of a's and b's in equation (1), we get Putting x = 0 in equation (ii) $$f(0) = -\frac{p}{-} - \frac{2 \cdot æ}{\varsigma} \cdot 1 + \frac{1}{2} + \frac{3}{2} + \dots \cdot +$$ $$f(0) = \frac{1}{f(0-0) + f(0+0)} = \frac{1}{2} 2^{\frac{p}{2}}$$ From equation (iii) $$- \underbrace{p}_{2 \, 4 \, p} = \underbrace{-p}_{60} - \underbrace{2 \, \acute{e} \, 1}_{-\frac{1}{2} \, 2} + \underbrace{1}_{-\frac{1}{2}} + \underbrace{1}_{-\frac{1}{2}} + \dots \mathring{u}$$ or $$\frac{p_2}{8} = \frac{1}{1} + \frac{1}{3} + \frac{1}{2} + \dots$$ **Even Function :** A function f(x) is said to be even (or symmetric) function if f(-x) = f(x) **Ex.** (i) x^2 , x^4 , x^6 ,even powers. of x (ii) $\cos x$, $\sec x$ etc. The graph of such a function is symmetrical with respect to y-axis. Here y-axis is a mirror for the reflection of the curve The area under such a curve from – p to p is double the area from 0 to p. $$\bigvee_{-\pi}^{\pi} (x) dx = 2 \sum_{0}^{x} \mathbf{\hat{O}} f(x) dx$$ **Odd function :** A function f(x) is called odd (skew symmetric) function if f(-x) = -f(x) **Ex.** (i) x^3 , x^5 , x^7 ,odd powers if x (ii) $\sin x$, $\cos ex$, $\tan x$ etc Here the area under the curve from -p to p is zero i.e., $$\sum_{-\pi}^{\pi} f(x) dx = 0$$ ## **Expansion of an Even Function:** an Even Function: $$a = \frac{1}{n} \int_{0}^{\pi} f(x) dx = 2 \int_{0}^{\pi} f(x) dx$$ $$a = \frac{1}{n} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{n} \int_{0}^{\pi} f(x) \cos nx dx$$ $$\pi \grave{O}_{-\pi} \qquad \pi \grave{O}_{0}$$ As f(x) and connx both are even, the product of f(x).cosnx is also even. $$b_n = \frac{1}{\pi} \quad \grave{O}_{-\pi} f(x) \sin nx \, dx = 0$$ As $\sin nx$ is an odd function. The product of an even function with odd function is odd. therefor we need not calculate b_n . The serives of an even function contain cosine terms only. ## **Expansion of an odd Function:** $$a = \frac{1}{1} \int_{0}^{\pi} f(x) dx = 0$$ $$a = \int_{0}^{\pi^{0-\pi}} f(x) \cdot \cos nx dx = 0 \quad Q$$ $$- \int_{0}^{\pi} f(x) \cdot \cos nx dx = 0 \quad Q$$ $$- \int_{0}^{\pi} f(x) \cdot \cos nx dx = 0 \quad Q$$ $$- \int_{0}^{\pi} f(x) \cdot \sin nx dx = \frac{2}{1} \int_{0}^{\pi} f(x) \cdot \sin nx dx$$ $(Q f(x).\sin nx \text{ is even function})$ The series of an odd function contain sine terms only. ## Example -3: Obtain a founier expansion of for $f(x) = x^3$. in -p < x < p #### **Solution:** $$= -x - p + \frac{-p}{2.(1)\text{eu}}$$ $$= \frac{-x}{2.(1)\text{eu}} + \frac{-p}{2.(1)\text{eu}}$$ $$= \frac{-x}{2.(1)\text{eu}} + \frac{-p}{3} \frac{$$ #### Half Range Series: To obtain a Fourier expansion of a function f(x) for the range (0, p) which is half the period of the fourier series. As it is immateriad what ever the function many be outside the range 0 < x < p, we extend the function to cover the range -p < x < p. So that the new function may be even or odd. The fourier expansion of such function of half the period consists sine or cosire term only. #### **Sine Series:** If it is required to expand f(x) as a sine aeries in 0 < x < p me extend the function to the range -p < x < p, so that if will be an odd function. The desired half-range sin series is given by $$f(x) = \mathop{\rm al}\limits_{n=1}^{\infty} b_n \sin nx$$ where $$b_n = \frac{2}{p} \delta_0^{\pi} f(x) \sin nx dx$$ #### **Cosine Series:** If its is required to expand f(x) as a cosine series in 0 < x < p, We extend the function to the range -p < x < p, so that if will be an even function. The desired half – range cosine series is given by $$f(x) = \frac{a}{-0} + \mathop{\mathbf{a}}_{0}^{\infty} a \, n \cos nx$$ $$2 \quad n=1$$ $$a \quad -\frac{2}{0} \quad \pi$$ where $$0 = f(x) \, dx$$ $$2 \quad \pi$$ $$a \quad n = \frac{2}{0} \quad f(x) \cos nx dx$$ #### Example -4: Find the half - range sine series for the function $f(x) = e^{ax}$ for 0 < x < p ## **Solution:** $$f(x) = \mathop{\mathsf{a}}\limits^{\infty} b_n \sin nx$$ where $b_n = \mathop{\mathsf{p}}\limits^{2} \mathop{\mathsf{d}}\limits^{\infty} 0^{\pi} f(x) \sin nx dx = \mathop{\mathsf{p}}\limits^{2} \mathop{\mathsf{d}}\limits^{\infty} 0^{\pi} e^{ax} \sin nx dx$ $$\frac{2 \acute{e} e^{ax}}{2} (a \sin n\pi x^{3} nx) \mathring{u}^{\pi}$$ $$= \frac{2}{e} \frac{e^{ax}}{2} (a \sin n\pi x^{3} nx) \mathring{u}$$ $$p \ddot{e} a + n$$ $$\frac{2}{e} \frac{e^{a\pi}}{2} (a \sin n\pi - n \cos n\frac{n}{p}) + \frac{n}{q} \mathring{u}$$ $$p \ddot{e} a + n$$ $$= \frac{2}{e} \frac{n}{2} (a \sin n\pi - n \cos n\frac{n}{p}) + \frac{n}{q} \mathring{u}$$ $$=
\frac{2}{e} \frac{n}{2} (a \sin n\pi - n \cos n\frac{n}{p}) + \frac{n}{q} \mathring{u}$$ $$= \frac{2}{e} \frac{n}{2} (a \sin n\pi - n \cos n\frac{n}{p}) + \frac{n}{q} \mathring{u}$$ $$= \frac{2}{e} \frac{n}{2} (a \sin n\pi - n \cos n\frac{n}{p}) + \frac{n}{q} \mathring{u}$$ $$= \frac{2}{e} \frac{n}{2} (a \sin n\pi - n \cos n\frac{n}{p}) + \frac{n}{q} \mathring{u}$$ $$= \frac{2}{e} \frac{n}{2} + n^{2} \mathring{e} \mathring{u}$$ $$= \frac{2}{e} \frac{n}{2} + n^{2} \mathring{e} \mathring{u}$$ $$= \frac{2}{e} \frac{n}{2} + n^{2} \mathring{e} \mathring{u}$$ $$= \frac{2}{e} \frac{n}{2} + n^{2} \frac{n}{2} \sin n + \frac{n}{2} \frac{n}{2}$$ # Assignment - 1. Find a fourier series to represent f(x) = p x, 0 < x < 2p - 2. Find a fourier series to represent the function $$f(x) = e^x$$, for $-p < x < p$ in the fourier series of the function $$f(x) = 10, \quad for \quad -p < x < -\frac{p}{2}$$ $$for \quad -p < x < -\frac{p}{2}$$ $$for \quad -\frac{1}{2} < x < \frac{1}{2}$$ $$\ddot{r} \qquad p$$ \qquad$$ **4.** Represent the following function by a fourier sine series $$f(t) = \begin{cases} it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 < t \text{ for } p \\ it, & 0 <$$ 5. Find the fourier cosine series for the function f(x) = f(x) $$\begin{array}{ccc} \ddot{\mathbf{i}} & & \mathbf{p} < x < \mathbf{p} \\ \hat{\mathbf{i}} & & 2 \end{array}$$ # CHAPTER - 5 # FINITE DIFFERENCE AND INTERPOLATION ## **Finite Difference:** Suppose we are given the following values of y = f(x) for a set of values fx: $$x$$ x_0 x_1 x_2 x_n y y_0 y_1 y_2 y_n The interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable. While the process of computing the value of the function outside the given range is calle extrapolation. Suppose that the function y = f(x) is tabulated for the equally spaced values $x = x_0$, $x_0 + h$, $x_0 + 2h$, $x_0 + h$ giving $y = y_0$, y_1 y_n . To determine the values of f(x) for some intermediate values of x, the following two types of difference are found useful. ## Forward difference - The differences $$\begin{array}{c} Dy_0 = y_1 - y_0 \\ Dy_1 = y_2 - y_1 \\ Dy_{_{n-1}} = y_{_n} - y_{_{n-1}} \\ \\ Similarly & D^2y_0 = Dy_1 - Dy_0 \\ D^3y_1 = D^2y_1 - D^2y_1 \\ D^n \ y_0 = D^{n-1} \ y_1 - D^{n-1} \ y_0 \end{array}$$ ## Forward difference table | Value of <i>x</i> | Value of y | 1st diff. | 2nd diff. | 3rd diff. | 4th diff. | 5th diff. | |-------------------|------------|------------|------------|-----------|-----------|------------------| | x0 | y0 | D yo | | | | | | x + h | y
1 | Dy | D^2y_{0} | | | | | x + 2h | у 2 | Dy 2 | D^2y | D^3y_0 | | | | x + 3h | у 3 | D y | D^2y | D^3y | D^4y | | | x + 4h | y
4 | D y 4 | D^2y | D^3y | D^4y | D ⁵ y | | <i>x</i> 0 + 5h | у5 | | | | | | #### Backward difference $$\begin{split} \tilde{N}y_1 &= y_1 - y_0 \\ \tilde{N}y_1 &= y_1 - y_0 \\ &: \\ &: \\ \tilde{N}^n y_n &= \tilde{N}^{n-1} \ y_n - \tilde{N}^{n-1} \ y_{n-1} \end{split}$$ ## Backward difference table | Value of <i>x</i> | Value of y | 1st diff. | 2nd diff. | 3rd diff. | 4th diff. | 5th diff. | |-------------------|------------|-------------|-----------|-----------|-----------|------------------| | x + h | y
y | D yo
D y | D^2y_0 | | | | | x + 2h | y | Dy, | D^2y | D^3y_0 | | | | x + 3h | y | Dy 3 | D^2y | D^3y | D^4y | | | x + 4h | y | D y | D^2y | D^3y_2 | D^4y | D ⁵ y | | $x_0 + 5h$ | у5 | | | _ | | · · | ## Differences of a polynomial We know that the expression of the form $f(x) = a_0x^n + a_2x^{n-1} + \dots + a_{n-1}x + a_n$ where a's are constant $(a_0 \ ^1 \ 0)$ and n is a positive integer is called a polynomial in x of degree n. ## Theorem: The 1^{st} difference is a polynomial of degree n is of degree n-1, the 2^{nd} difference is of degree n-2, and the nth difference is constant. While higher difference are equal to zero. The converse of the theorem is alos true which stated that if nth difference of a function tabulated at equally spaced intervals are constant, the function is a polynomial of degree n. #### Example -1: Form the successive forward differences of ax^3 , the interval being h. #### **Solution:** Here $$y = f(x) = ax^3$$ We know that Dy0 = y1 - y 0 = $$f(x + h) - f(x)$$ \[D (ax^3) = $a(x - h)^3 - ax^3$ = $a(x^3 + 3x^2h + 3gh^2 + h^3) - ax^3$ = $a(3x^2h + 3xh^2 + h^3)$ Again, D²y0 = Dy1 - Dy0 \[D^2(ax^3) = $a\{3(x + h)^2h + 3(x + h)h^2 + h^3\} - a(3x^2h + 3xh^2 + h^3)$ = $a\{3x^2h + 6xh^2 + 3h^3 + 3xh^2 + 3h^3 + h^3 - 3x^2h - 3xh^2 - h^3\} = a\{6xh^2 + 6h^3\}$ $$D^{3}y_{0} = D^{2}y_{1} = D^{2}y_{0}$$ $$D^{3}(ax^{3}) = a \{6(x + h) h^{2} + 6h^{3}\} - a \{6xh^{2} + 6h^{3}\}$$ $$= a \{6xh^{2} + 6h^{3} + 6h^{3} - 6xh^{2} - 6h^{3}\} = 6ah^{3} = Constant$$ $$\int D^4(ax^3) = 6ah^3 - 6ah^3 = 0$$ Here it shows that the the third differences of a polynomial of third degree is constant & the higher difference & are zero. ## Factorial Notation A product of the form x(x-1) (x-2)...... (x-r+1) is devoted by $[x]^r$ and is called a factorial. In particular $$[x] = x$$, $[x]2 = x(x - 1)$ $$[x]^3 = x(x-1)(x-2)$$ $$[x]^n = x (x-1) (x-2) \dots (x-n+1)$$ which is called a factorial polynomial or function. The factorial notation is of special utility in the theory of first differences. It helps in finding the successive differences of a polynomials directly by simply rule of differentiation. The result of differentiating $[x]^{r}$ is similar to that of differential x^{r} . ## Example -2: Estimate the missing term in the following table: | x | 0 | 1 | 2 | 3 | 4 | |------|---|---|---|---|---| | f(x) | 1 | 3 | 9 | 8 | 1 | #### **Solution:** Let the missing term by y_1 . The following is the difference table. | х | y | D | D^2 | \mathbf{D}_3 | D^4 | |---|------------------------|-----------|-----------------|----------------|----------------| | 0 | 1 | | | | | | 1 | 3 | 2 | 4 | y3 – 19 | | | 2 | | | . 15 | Ju | 104 4 | | 2 | 9 | 6 | y3 – 15 | | $124 - 4y_{3}$ | | 3 | $\mathbf{y}_{_{_{3}}}$ | $y_3 - 9$ | $81 - 2y_3 + 9$ | $105 - 3y_3$ | | | 4 | 81 | 81 – y 3 | | | | As only four entries y_0 , y_1 , y_2 , y_4 are given, the function y can be represented by a third degree polynomial, here 4^{th} order difference becomes zero, i.e., $$124 - 4y_3 = 0$$ $$\dot{P}$$ y₃ = 31 Hence the missing term is 31. ## Example -3: Estimate the missing term in the following table: | х | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |---|---|----|----|----|---|-----|---| | у | 5 | 11 | 22 | 40 | | 140 | | #### **Solution:** Let the missing term by y₄ & y₆. The following is the difference table. | <i>x</i> : | y: | D | \mathbf{D}_2 | \mathbf{D}_3 | \mathbf{D}_4 | D ₅ | |------------|------------------------|------------|----------------|--------------------|----------------|----------------------| | 0 | 5 | | | | | | | 1 | 11 | 6 | 5 | | | | | 2 | 22 | 11 | 7 | 2 | y4 – 67 | | | 3 | 40 | 18 | $y_4 - 40$ | $y_4 - 58$ | $303-4y_4$ | $370 - 5y_4$ | | 4 | y4 | $y_4 - 40$ | $180 - 3y_4$ | $238 - 3y_4$ | $y_6 + 6y_4 -$ | $y_6 + 10y_4 - 1001$ | | 5 | 140 | 140 – y 4 | $y_6 + y_4 -$ | $y_6 + 3y_4 - 460$ | 698 | | | 6 | $\mathbf{y}_{_{_{6}}}$ | y6 – 140 | 280 | | | | As only four entries y₀, y₁, y₂, y₄, y₅ are given, the function y can be represented by a 4th degree polynomial & hence 5th difference becomes zero, i.e., $$370 - 5y_4 = 0$$ and $$y_6 + 10y_4 - 1001 = 0$$ Solving these, we get $$y_4 = 74$$ $$y_6 = 261$$ #### Newton's Forward interpolation formula for equal intervals Let the function y = f(x) takes the values y, y,
y.....corresponding to the values $$x_0, x_1 + h, x_0 + 2h \text{ of } x.$$ $$f(x_0 + nh) = y_0 + n D y_0 + \frac{n(n-1)}{2!3!} D^2 y_0 + \frac{n(n-1)(n-2)}{2!3!} D^3 y_0 + \dots$$ **Obs.** This formula is used for interpolating the values of y near the beginning of a set of tabulated values and exterpolating values of y a little backward (i.e. to the left) of y_0 . #### Newton's backward interpolation formula for equal intervals Let the function y = f(x) takes the values y, y, y........... corresponding to the values $$x_0, x_1 + h, x_0 + 2h \text{ of } x.$$ $$f(x_n + nh) = y_n + n\tilde{N} y_n + \frac{n(n+1)}{2!3!} + \frac{\tilde{N}^2 y_0 + n(n+1)(n+2)}{\tilde{N}^3 y_0 + \dots}$$ **Obs.** This formula is used for interpolating the values of y near the beginning of a set of tabulated values and exterpolating values of y a little backward (i.e. to the right) of y_n . ## Example – 4: The table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earth's surface. | x = height | 100 | 150 | 200 | 250 | 300 | 350 | 400 | |--------------|-------|-------|-------|-------|-------|-------|-------| | y = distance | 10.63 | 13.03 | 15.04 | 16.81 | 18.42 | 19.90 | 21.27 | Find the values of y when (i) x = 218 ft. #### **Solution:** The difference table is as under: | x | y | D | \mathbf{D}_2 | \mathbf{D}_3 | \mathbf{D}_4 | |-----|-------|------|----------------|----------------|----------------| | 100 | 10.63 | | | | | | | | 2.40 | | | | | 150 | 13.03 | | -0.39 | | | | | | 2.01 | | 0.15 | | | 200 | 15.04 | | -0.24 | | -0.07 | | | | 1.77 | | 0.08 | | | 250 | 16.81 | | -0.16 | | -0.05 | | | | 1.61 | | 0.03 | | | 300 | 18.42 | | -0.13 | | -0.01 | | | | 1.48 | | 0.02 | | | 350 | 19.90 | | -0.11 | | | | | | 1.37 | | | | | 400 | 21.27 | | | | | (i) If we take $$x_0 = 200$$, then $y_0 = 15.04$, $Dy_0 = 1.77$, $D^2y_0 = -0.16$, $D^3y_0 = 0.03$ etc. Since $x = 218$ and $h = 50$, $\therefore n = \frac{x - x_0}{100} = \frac{18}{100} = 0.36$ \ Using Newton's forward interpolation formula, we get $$y_{218} = y_{0} + n \Delta y_{0} + \frac{n}{1.2} \left(\frac{n-1}{\Delta^{2} y_{0}} \right) \frac{n(n-1)(n-2)}{1.2.3} \Delta^{3} y_{0} + \dots$$ $$f(218) = 15.04 + 0.36(1.77) + \frac{0.36(-0.64)(-1.64)}{26} (-0.16) + \frac{0.36(-0.64)(-1.64)}{26}$$ (ii) Since x = 410 is near the end of the table, we use Newton's backward interpolation formula. \taking $$x_n = 400, n = \frac{x - x_n}{h} = \frac{10}{50} = 0.2$$ Using the line of backward differences $$Y_n = 21.27, \ \tilde{N}^2 y_n = -0.11, \ \tilde{N}^3 y_n = 0.02 \ \text{etc.}$$ \ Newton's backward formula gives $$y = y + n\tilde{N}y + \frac{n(n+1)}{2} \tilde{N}^2 y + \frac{n(n+1)(n+2)}{2} \tilde{N}^3 y + \dots$$ $$= 21.27 + 0.2(1.37) + \frac{0.2(1.2)}{2} (-0.11) + \dots = 21.53 \text{ nautical miles.}$$ ## Example -5: Find the number of men getting wages between Rs. 10 and 15 from the following data: | Wages in Rs. | 0–10 | 10–20 | 20–30 | 30–40 | |--------------|------|-------|-------|-------| | Frequency | 9 | 30 | 35 | 42 | #### **Solution:** First we prepare the cumulative frequency table, as follows: | Wages less than (x) | 10 | 20 | 30 | 40 | |---------------------|----|----|----|-----| | No.of men (y) | 9 | 39 | 74 | 116 | Now the difference table is | х | у | D | D^2 | D^3 | |----|-----|----|-------|-------| | 10 | 9 | | | | | | | 30 | | | | 20 | 39 | | _5 | | | | | 35 | | 2 | | 30 | 74 | | 7 | | | | | 42 | | | | 40 | 116 | | | | We shall find y_{15} i.e. number of men getting wages less than 15. Taking $$x_0 = 10$$, $x = 15$, we have 5 $$n = \frac{0}{h} = \frac{10}{10} = 0.5$$ \ using Newton's forward interpolation formula, we get $$y_{15} = y_{10} + n Dy_{10} + \frac{n(n-1)}{2} D^{2} y_{10} + \frac{n(n-1)(n-2)}{3!} D^{3} y_{10}$$ $$= 9 + (0.5)'30 + \frac{(0.5)(0.5-1)}{2} '5 + \frac{(0.5)(0.5-1)(0.5-2)}{6} '2$$ $$= 9 + 15 - 0.625 + 0.125 = 23.5 = 24 \text{ approx.}$$ Number of men getting wages between Rs. 10 and 15 = 24 - 10 = 5 approx. ## Example – 6: Find the cubic polynomial which takes the following values: | х | 0 | 1 | 2 | 3 | |------|---|---|---|----| | f(x) | 1 | 2 | 1 | 10 | #### **Solution**: The difference table is | х | f(x) | $\mathrm{D}f(x)$ | $D^2 f(x)$ | $D^{3}f(x)$ | |-------------------------------------|------|------------------|------------|-------------| | 0 | 1 | | | | | | | 1 | | | | 1 | 2 | | -2 | | | | | -1 | | 12 | | 2 | 1 | | 10 | | | | | 9 | | | | 3 | 10 | | | | | We take $x = 0$ and $= x = 0$ $= x$ | | | | | \ using Newton's forward interpolation formula, we get $=2x^3+7x^2+6x+1$, which is the required polynomial. To compute f(4), we take $x_n = 3$, x = 4 so that $p = \frac{x - x_n}{h} = 1$ Using Newton's backward interpolation formula, we get $$f(4) = f(3) + n\tilde{N}f(3) + \frac{n(n+1)}{1.2} \tilde{N}^2 f(3) + \frac{n(n+1)(n+2)}{1.2.3} \tilde{N}^3 f(3)$$ $$= 10 + 9 + 10 + 12 + 41$$ which is the same value are that obtained by substituing x = 4 in the cubic polynomial above. **Obs.** The above example shows that if a tabulated function is a polynomial, then interpolation and extrapolation give the same values. # Lagrange's Interpolation formula for unequal intervals: $$f(x) = \frac{(x-x_1)(x-x_2)....(x-x_n)}{(x-x_1)(x_0-x_2)....(x_0-x_n)}$$ $$y = \underbrace{\left(x - x_1\right) (x - x_2) (x - x_n)}_{0 (x_1 - x_0) (x_1 - x_2) (x_1 - x_n)}$$ $$y_1 + - \underbrace{\left(x - x_0\right) (x - x_1) (x - x_{n-1})}_{(x_n - x_0) (x_n - x_2) (x_n - x_{n-1})}$$ ## Lagrange's Method for unequally spaced values of x: $$x = \frac{(y-y_1)(y-y_2).....(y-y_n)}{(y_0-y_1)(y_0-y_2).....(y_0-y_n)} + \frac{(y-y_0)(y-y_2).....(y-y_n)}{(y_1-y_0)(y_1-y_2).....(y_1-y_n)} + \dots + \frac{(y-y_0)(y-y_1).....(y-y_n-1)}{(y_0-y_0)(y_0-y_1).....(y_n-y_n-1)}$$ ## Example -7: Use lagrange's interpolation formula to find the value of y when x = 10, if the following values of x & y are given. #### **Solution:** | Here | $x_0 = 5$ | $x_1 = 6$ | $x_2 = 9$ | $x_3 = 11$ | |------|------------|------------|-----------|------------| | and | $y_0 = 12$ | $y_1 = 13$ | y = 14 | $y_3 = 16$ | Putting x = 10 and substituting the above value in Lagrange's formula, we get : $$f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}$$ $$+ \frac{-(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} + \frac{-(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}$$ $$f(10) = \underbrace{\left(10 - 6\right)(10 - 9)(10}_{-6)(10 - 9)(10 - 11)} + \underbrace{\frac{12}{10 - 5}(10 - 9)(10 - 11)}_{-6)(5 - 9)(5 - 11)(6 - 5)(6 - 9)(6 - 11)(5)}$$ $$+ \underbrace{\frac{10 - 5}{10 - 6}(10 - 6)(10 - 11)}_{-6)(9 - 11)(10 - 5)(11 - 6)(11 - 9)(9)} \times 16$$ $$- \underbrace{\frac{4 \times 1 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6)(10 - 11)} \times 12 + \underbrace{\frac{5 \times 1 \times (-1)}{(-5)(10 - 6)(10 - 5)(11 - 6)}}_{-6)(11 - 9)(9)} \times 16$$ $$- \underbrace{\frac{4 \times 1 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6)(10 - 11)} \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6)(10 - 11)} \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6)(10 - 11)} \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6)(10 - 11)} \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6)(10 - 11)} \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6)(10 - 11)} \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11) \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11) \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11) \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11) \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11) \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11) \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11) \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11) \times 13$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11) \times 14$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11)$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11)$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11)$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-6}(10 - 11)$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-7}(10 - 11)$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-4) \times (-6)}}_{-7}(10 - 11)$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-6)}}_{-7}(10 - 11)$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-6)}}_{-7}(10 - 11)$$ $$+ \underbrace{\frac{5 \times 4 \times (-1)}{(-1) \times (-6)}}_{-7}(10 - 11)$$ $$+ \underbrace{\frac{5 \times 4 \times (-1$$ ## Example -8: Apply lagrange's method to find the value of x when f(x) = 15 from the given data. | X | 5 | 6 | 9 | 11 | |------|----|----|----|----| | f(x) | 12 | 13 | 14 | 16 | #### **Solution:** Here $$x_0 = 5$$, $x_1 = 6$, $x_2 = 9$, $x_3 = 11$ $y_0 = 12$, $y_1 = 13$, $y_2 = 14$, $y_3 = 16$ Taking y = 15 and using the above results in Lagrange's inverse interpolation formula. $$x = f(x) = \frac{(y - y_1)(y - y_2)(y - y_3)}{(y - y)(y - y)(y - y)} x_0 + \frac{(y - y_0)(y - y_1)(y - y_1)(y - y_2)}{(y - y_1)(y - y_1)(y - y_2)} x_1$$ $$+ \frac{(y - y_0)(y - y_1)(y - y_3)}{(y - y_1)(y - y_3)} = \frac{(y - y_0)(y - y_1)(y - y_2)}{(y - y_0)(y
- y_1)(y - y_2)} x_3$$ $$= \frac{(15 - 13)1(15 - 14)(15 - 16)}{(13 - 13)(12 - 14)(12 - 16)} \times 5 + \frac{(15 - 12)1(15 - 14)(15 - 16)}{(13 - 12)(13 - 14)(13 - 16)} \times 6$$ $$(13 - 13)(12 - 14)(12 - 16) \times 5 + \frac{(15 - 12)1(15 - 14)(15 - 16)}{(13 - 12)(14 - 13)(14 - 16)(16 - 12)(16 - 13)(16 - 16)(14)}$$ $$= \frac{2 \times 1 \times (-1)}{(-1) \times (-2) \times (-4)} \times 5 + \frac{3 \times 1 \times (-1)}{1 \times (-1) \times (-3)} \times 6 + \frac{3 \times 2 \times (-1)}{2 \times 1 \times (-2)} \times 9 + \frac{3 \times 2 \times 1}{4 \times 3 \times 2} \times 11$$ $$= \frac{5 - 6 + 27 - 11}{424} = 1.25 - 6 + 13.5 + 2.75 = 17.5 - 6 = 11.5$$ # Assignment 1. Find a cubic polynomial which takes the following values 2. Given the values Evaluate y₉ using Lagrange's formula. 3. Given $\sin 45^\circ = 0.7071$, $\sin 50^\circ = 0.7660$, $\sin 55^\circ = 0.8192$ and $\sin 60^\circ = 0.8660$. Find $\sin 52^\circ$ using Newton's forward interpolation formula. # CHAPTER - 6 # NUMERICAL SOLUTION OF EQUATION 1. An expression of the form $$f(x) = a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n$$ where a_0 , a_1 , a_2 ,...... a_{n-1} 0 are constant and n is a positive integer is called a polynomial in x of degree n. **2.** The polynomial f(x) = 0 For example (1) $$2x^2 + x^2 - 13x + 6 = 0$$ $$(2) x^3 - 4 x + 9 = 0$$ are called algebraic equation. **3.** Transcendental equation - If f(x) is a functions other than algebraic function such as trigonometric, logarithmic, exponential etc. then f(x) is called transcendental function. **4.** Root of an equation - The value of x which satisfied f(x) = 0 is called the root of the equation. Geometrically a root of the equation f(x) = 0 & y = 0 is the value of x where the graph meet the y-axis. 5. Solution of an equation - The process of finding a root of an equation is known as the solution of an equation. - **6.** Different methods to solve the equations. - (a) Analytical method - (b) Graphical method - (c) Numerical method - 7. Limitation of analytical method This methods produce very exact and accurate results. But it fails in many cases such as it fails to find roots of transcendental equation. **8.** Limitation of graphical method - This methods are simple but these methods produce result to a low degree accuracy. **9.** Advantages of Numerical method – This methods are often of a repetitive nature. These consist in repeated execution of the same process. Where each step the result of proceeding step is used. This is known as iteration process and is repeated till the result is obtained to a desired degree of accuracy. The followings are some Numerical methods to find root of algebraic and transcendental equation – - (1) Bisection method - (2) Newton Raphson method #### **Bisection method:** This method consists of locating a root of the equation f(x) = 0 between a and b. If f(x) is continuous between a and b, and f(a) and f(b) are of opposite signs then there is a root between a and b. From the graph f(a) is negative and f(b) is positive then there is a root lies between a and b. The first approximation to the root is $$x_1 = (a+b)$$ if f(x) = 0, then x_1 is the root of equation f(x) = 0. Otherwise the root lies between a and x_1 or x_1 and x_1 or x_2 and x_3 or x_4 and x_4 or x_4 and continue the process until the root is found to desired accuracy. In the fig.1 $f(x_1)$ is +ve, so the root lies between a and x_1 . Then the 2^{nd} approximation a x to the root is $x_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 \end{pmatrix}$. If f(x) is -ve, the root lies between x and x. So the third x approximation to the root is $x_3 = \frac{1}{2}(x_1 + x_2)$ and so on. #### Example -1: (a) Find a root of the equation $x^3 - 4x - 9 = 0$ using the bisection method correct to three decimal places. **Solution:** $$\frac{2}{f(2) = -\text{ve}} \frac{2.5}{f(2.5) = -\text{ve}} \frac{2.5}{f(2.75) = \text{ve}} \frac{2.5}{f(2.75) = \text{ve}} \frac{3}{f(3) = +\text{ve}}$$ Let $$f(x) = x^3 - 4x - 9$$ $f(2) = (2)^3 - 4(2) - 9 = -9$ (-ve) $f(3) = (3)^3 - 4(3) - 9 = 6$ (+ve) a root lies between 2 and 3. First approximate to the root is $\begin{cases} 1 \end{cases}$ $$x_1 = \frac{1}{2}(2+3) = 2.5$$ $$f(x_1) = (2.5)^3 - 4(2.5) - 9 = -3.375 \text{ (-ve)}$$ the root lies between x_1 and 3. The second approximation to the root is $$x2 = \frac{1}{2} (x_1 + 3) = 1 (2.5 + 3) = 2.75$$ $$f(x_2) = (2.75)^3 - 4(2.75) - 9 = 0.7969 \text{ (+ve)}$$ the root lies between 2.5 and 2.75 $$\frac{1}{\text{So } x_3 = 2(2.5 + 2.75) = 2.625}$$ $$f(2.625) = (2.625)^3 - 4(2.625) - 9 = -1.4121 \text{ (-ve)}$$ the root lies between 2.625 and 2.75. $$\frac{1}{x^4 = 2} (2.625 + 2.75) = 2.6875$$ Repeating this process, the successive approximation are $$x_5 = 2.71875$$, $x_6 = 2.70313$, $x_7 = 2.71094$, $x_8 = 2.70703$, $x_9 = 2.70508$, $x_{10} = 2.70605$, $x_{11} = 2.70654$, $x_{12} = 2.70642$. Hence the root is 2.7064. #### Example -2: Find the root of the equation $x \log_{10} x = 1.2$ which lies between 2 and 3, using bisection method taking 2 stages. ## **Solution:** Let $$f(x) = x \log_{10} x - 1.2 = 2 \times \log_{10} 2 - 1.2$$ = $2 \times .3010 - 1.2 = -0.5979$ (-ve) $$f(3) = 3 \times \log_{10} x - 1.2 = 0.2314 \text{ (+ve)}$$ the root lies between 2 and 3 $$\frac{1}{x_1 = 2(2+3)} = 2.5$$ $$f(2.5) = 2.5 (\log_{10}(2.5)) - 1.2 = -0.205 (-ve)$$ the root lies between 2.5 and 3 $$x_2 = \frac{1}{2}(2.5 + 3) = 2.75$$ Hence the root is 2.75. ## Example -3: By using the bisection method, find an approximate root of the equation $\sin x = x$, that lies between x = 1 and x = 1.5 (measured in radians). Carry out computations upto the 7th stage. ## Solution. Let $f(x) = x \sin x - 1$. We know that $V = 57.3^{\circ}$ Since $f(1) = 1 \times \sin(1) - 1 = \sin(57.3^{\circ}) - 1 = -0.15849$ and $f(1.5) = 1.5 \times \sin(1.5)^{r} - 1 = 1.5 \times \sin(85.95)^{o} - 1 = 0.49625;$ a root lies between 1 and 1.5. 1 \ first approximation to the root is $x_1 = 2(1 + 1.5) = 1.25$. Then $f(x_1) = (1.25) \sin (1.25) - 1 = 1.25 \sin (71.625^{\circ}) - 1 = 0.18627$ and f(1) < 0. \ a root lies between 1 and $x_1 = 1.25$. 1 Thus the second approximation to the root is $x_2 = 2(1+\overline{1}.25) = 1.125$. Then $f(x_2) = 1.125 \sin(1.125) - 1 = 1.125 \sin(64.46)^{\circ} - 1 = 0.01509$ and f(1) < 0. \ a root lies between 1 and $x_2 - 1.125$. 1 Thus the third approximation to the root is $x_3 = 2(1+1.125) = 1.0625$ Then $f(x_3) = 1.0625 \sin(1.0625) - 1 = 1.0625 \sin(60.88) - 1 = -0.0718 <$ 0 and $f(x_2) > 0$, i.e. now the root lies between $x_4 = 1.0625$ and $x_2 = 1.125$. 1 \ fourth approximation to the root is $x_4 = 2(1.0625 + 1.125) = 1.09375$ Then $f(x_4) = -0.02836 < 0$ and $f(x_2) > 0$, i.e., the root lies between $x_4 = 1.09375$ and $x_2 = 1.125$. 1 \ fifth approximation to the root is $x_5 = 2(1.09375 + 1.125) = 1.10937$ Then $f(x_5) = -0.00664 < 0$ and $f(x_2) > 0$. \ the root lies between $x_5 = 1.10937$ and $x_2 = 1.125$. Thus the sixth approximation to the root is $$\begin{array}{c} 1 \\ x_6 = \overline{2} \ (1.10937 + 1.125) = 1.11719 \end{array}$$ Then $f(x_6) = 0.00421 > 0$. But $f(x_5) < 0$. \ the root lies between $x_5 = 1.10937$ and $x_6 = 1.11719$. 1 Thus the seventh approximation to the root is $x_7 = 2 (1.10937 + 1.11719) = 1.11328$ Hence the desired approximation to the root is 1.11328. In this method, instead of taking two initial rough approximations to the root x = a as in the previous two methods, a single rough approximation x_0 to the root is taken. Then we use the following formula, known as Newton-Raphson formula or Newton iteration formula, to get the successive approximations. $$x_{n+1} = x_n - \frac{f(x_n)}{f^1(x)} \qquad(1)$$ Putting $n = 0, 1, 2,\dots$ etc. in the above for mula (1), we get the first, second, third approximations as follows. $$x_{1} = x_{0} - \frac{f(x_{0})}{f^{1}(x)}$$ $$x_{2} = x_{1} - \frac{f(x_{1})}{f^{1}(x)}$$ $$x_{3} = x_{2} - \frac{f(x_{2})}{f^{1}(x)}$$ This method is useful in cases of large values of $f^{1}(x)$ i.e., when the graph of f(x) while crossing the x-axis is nearly vertical. The process of finding successive approximations to the root (i.e., x_1 , x_2 , x_3 etc.) may be continued till the root is found to desired degree of accuracy. ## Example -4: Find by Newton's method, a root of the equation $x^3 - 3x + 1 = 0$ correct to 3 decimal places. #### **Solution:** Let $$f(x) = x^3 - 3x + 1$$ $f(1) - 1 - 3 + 1 = -1$ $f(2) = 2^3 - 3 \cdot 2 + 1 = 8 - 6 + 1 = 3$ Þ The root of f(x) lies between 1 & 2 Let $$x = 1.5$$, Also $f(x) = 3x^2 - 3$ Newton's formula gives $$x = x = \frac{f(x)}{\frac{1}{n}} = x - \frac{(x^3 - 3x + 1)}{\frac{2x - 3}{n}}$$ $$= \frac{3x^3 - 3x - 3x^3 + 3x - 1}{\frac{n}{3x^2 - 3}} = \frac{2x^3 - 1}{\frac{n}{3x^2 - 3}} \dots (1)$$ Putting n = 0 in (i), the first approximation x_1 is given by $$x_1 = \frac{2x_0^3 - 1}{3x_0 - 3} = \frac{2 \times (1.5)^3 - 1}{3 \times (1.5)} = \frac{2 \times 3.375 - 1}{3 \times 2.25 - 3} = \frac{5.75}{3.75} = 1.533$$ Putting n = 1 in (i), the second approximation x_2 is given by $$x_2 = \frac{2x_1^3 - 1}{3x_4 - 3} = \frac{2 \times (1.533)^3 - 1}{3 \times (1.533)^3 - 3} = \frac{2 \times 3.6026 - 1}{3 \times 2.35 - 3} = \frac{6.2052}{4.05} = 1.532$$ #### Example -5: Find the Newton's method, the real root of the equation $3 x = \cos x + 1$ #### **Solution:** Let $$f(x) = 3x - \cos x - 1$$ $f(0) = -2 = -\text{ve}, f(1) = 3 - 0.5403 - 1 = 1.4597 + +\text{ve}$ So a root of f(x) = 0 lies between 0 and 1. It is nearer to 1. Let us take $x_0 = 0.6$. Also $f(x) = 3 + \sin x$ \ Newton's iteration formula gives $$x = x - \frac{f(x)}{f'(x_n)} = x - \frac{3x - \cos x_n - 1}{3 + \sin x_n} = \frac{x_n \sin x_n + \cos x_n}{3 + \sin x_n} + 1 \dots (i)$$ Putting n = 0, the first approximation x_1 is given by $$x = \frac{x_0 \sin x_0 + \cos x_0 + 1}{3 + \sin x_0} = \frac{(0.6) \sin(0.6) + \cos(0.6) + 1}{3 \sin(0.6)}$$ $$= 0.6 \times 0.5729 + 0.82533 + 1 = 0.6071$$ $$3 + 0.5729$$
Putting n = 1 in (i), the second approximation is $$x = \underbrace{x_1 \sin x_1 + \cos x_1 + 1}_{2} = \underbrace{0.6071 \sin(0.6071) + \cos(0.6071) + 1}_{3 + \sin x_1} = \underbrace{0.6071 \times 0.57049 + 0.8213 + 1}_{3 + 0.57049} = \underbrace{0.6071 \text{ Clearly}, x = x}_{1}.$$ Hence the desired root is 0.6071 correct to four decimal places. # Assignment 1. Find a root of the following equations, using the bisection method correct to three decimal places. (a) $$x^3 - x - 11 = 0$$ (b) $$x^4 - x - 10 = 0$$ 2. Find by Newton-Raphson method, a root of the following equations correct to 3 decimal places. (a) $$x^3 - 3x + 1 = 0$$ (b) $$3x^3 - 9x^2 + 8 = 0$$ 3. Using Newton-Raphson method to evaluate the following (a) $$\frac{1}{32}$$ (b) $\sqrt{41}$ rrr