NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** ## SUBJECT: TH-3 (HYDRAULIC MACHINE & INDUSTRIAL FLUID POWER) ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | Sl.No. | Name of the chapter as per the Syllabus | No. of Periods as per the Syllabus | No. of
periods
actually
needed | |--------|---|------------------------------------|---| | 1 | HYDRAULIC TURBINES | 15 | 16 | | 2 | CENTRIFUGAL PUMPS | 5 | 5 | | 3 | PNEUMATIC SYSTEM | 20 | 22 | | 4 | HYDRAULIC SYSTEM | 20 | 20 | | | Total Period: | 60 | 62 | | Discipline: | MECHANICAL 5+h | Name of the Teaching Faculty: Er.Bishnu Charan Jena | | | |---------------------------|-----------------|--|--|--| | MECHANICAL
ENGINEERING | | SESSION : 2023-24 EXAMINATION : 2023 (W) | | | | Week | Class Day | To be Covered | | | | 1 st | 1 st | 1.1 Definition and classification of hydraulic turbines | | | | | 2 nd | 1.1 Construction and working principle of impulse turbine. | | | | | 3 rd | 1.1 Velocity diagram of moving blades, work done and derivation of various efficiencies of Francis turbine. | | | | | 4 th | 1.5 Velocity diagram of moving blades, work done and derivation of various efficiencies of Kaplan turbine | | | | 2 nd | 1 st | Velocity diagram of moving blades, work done and derivation of various efficiencies of Francis turbine. | | | | | 2 nd | Numerical on above | | | | | 3 rd | Distinguish between impulse turbine and reaction turbine. | | | | | 4 th | Numerical on above | | | | 3 rd | 1 st | CENTRIFUGAL PUMPS | | | | | 2 nd | Construction and working principle of centrifugal pumps | | | | | 3 rd | Construction and working principle of centrifugal pumps | | | | | 4 th | work done and derivation of various efficiencies of centrifugal pumps | | | | | 1 st | Numerical on above | | | | 4 th | 2 nd | RECIPROCATING PUMPS | | | | | 3 rd | RECIPROCATING PUMPS | | | | | 4 th | Describe construction & Describe construction amp; working of single acting reciprocating pump. | | | | | 1 st | Describe construction & Describe construction & Describe acting reciprocating pump | | | | 5 th | 2 nd | Describe construction & Descri | | | | | 3 rd | Derive the formula foe power required to drive the pum | | | | | 4 th | (Single acting & Couble acting) | | | | | 1 st | Define slip | | | | 6 th | 2 nd | State positive & mp; negative slip & mp; establish relation between slip & coefficient of discharge. | | | | | 3 rd | State positive & Description of discharge. | | |-------------------------|-----------------|---|--| | Week | Class Day | | | | 6 th | 4 th | State positive & | | | 7 th | 1 st | Solve numerical on above | | | | 2 nd | Solve numerical on above | | | | 3 rd | Solve numerical on above | | | | 4 th | PNEUMATIC CONTROL SYSTEM | | | 8 th | 1 st | PNEUMATIC CONTROL SYSTEM | | | | 2 nd | Elements –filter-regulator-lubrication unit | | | | 3 rd | INTERNAL ASSESSMENT | | | | 4 th | INTERNAL ASSESSMENT | | | | 1 st | Pressure relief valves | | | 9 th | 2 nd | Pressure relief valves | | | | 3 rd | Pressure regulation valves | | | | 4 th | Pressure regulation valves | | | | 1 st | Direction control valves | | | | 2 nd | 3/2DCV,5/2 DCV,5/3DCV | | | 10 th | 3 rd | Flow control valves | | | | 4 th | Throttle valves | | | | 1 st | ISO Symbols of pneumatic components | | | +h | 2 nd | Direct control of single acting cylinder | | | 11 th | 3 rd | Direct control of single acting cylinder | | | | 4 th | Operation of double acting cylinder | | | | 1 st | Operation of double acting cylinder with metering in and metering out control | | | al. | 2 nd | CLASS TEST | | | 12 th | 3 rd | HYDRAULIC CONTROL SYSTEM | | | | 4 th | Hydraulic system, its merit and demerits | | | |------------------|-----------------|---|--|--| | Week | Class Day | To be Covered | | | | 13 th | 1 st | Hydraulic accumulators | | | | | 2 nd | Pressure control valves | | | | | 3 rd | Pressure relief valves | | | | | 4 th | Pressure regulation valves | | | | 14 th | 1 st | 3/2DCV,5/2 DCV,5/3DCV | | | | | 2 nd | Throttle valves | | | | | 3 rd | Fluid power pumps | | | | | 4 th | Vane pump , ISO SYMBOL | | | | 15 th | 1 st | ISO Symbols for hydraulic components. | | | | | 2 nd | Direct control of single acting cylinder | | | | | 3 rd | Operation of double acting cylinder | | | | | 4 th | Operation of double acting cylinder with metering in and metering out control | | | | 16 th | 1 st | Operation of double acting cylinder with metering in and metering out control | | | | | 2 nd | Comparison of hydraulic and pneumatic system | | | | | 3 rd | Comparison of hydraulic and pneumatic system | | | | | 4 th | Revision | | |