

## NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)



## **LESSON PLAN**

**SUBJECT: Th-2 (DESIGN OF MACHINE ELEMENT)** 

## **CHAPTER WISE DISTRIBUTION OF PERIODS**

| Sl.No. | Name of the chapter as per the Syllabus | No. of<br>Periods | no. of periods |
|--------|-----------------------------------------|-------------------|----------------|
| 1      | INTRODUCTION                            | 12                | 12             |
| 2      | DESIGN OF FASTENING ELEMENTS            | 12                | 12             |
| 3      | DESIGN OF SHAFT AND KEYS                | 12                | 12             |
| 4      | DESIGN OF COUPLING                      |                   | 12             |
| 5      | DESIGN OF CLOSED COIL HELICAL SPRING    |                   | 12             |
|        | TOTAL                                   |                   | 60             |

| <b>Discipline:</b> Mechanical ENGINEERING | Semester:<br>5TH | Name of the Teaching Faculty: Er. Ranjit Giri                                                                                |  |  |  |
|-------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                           |                  | <b>SESSION</b> : 2023-24 <b>EXAMINATION</b> : 2023 (w)                                                                       |  |  |  |
| Week                                      | Class Day        | Topics to be Covered                                                                                                         |  |  |  |
|                                           | 1 <sup>st</sup>  | 1.1 Introduction to Machine Design and Classify it.                                                                          |  |  |  |
| 1 <sup>st</sup>                           | 2 <sup>nd</sup>  | 1.1 Introduction to Machine Design and Classify it.                                                                          |  |  |  |
| 1                                         | 3 <sup>rd</sup>  | 1.2. Different mechanical engineering materials used in design with their uses                                               |  |  |  |
|                                           | 4 <sup>th</sup>  | 1.2. Different mechanical engineering materials used in design with their uses and their mechanical and physical properties. |  |  |  |
| 2 <sup>nd</sup>                           | 1 <sup>st</sup>  | 1.3 Define working stress, yield stress, ultimate stress & factor of safety and stress –strain curve for M.S & C.I.          |  |  |  |
|                                           | 2 <sup>nd</sup>  | 1.3 Define working stress, yield stress, ultimate stress & factor of safety and stress –strain curve for M.S & C.I.          |  |  |  |
|                                           | 3 <sup>rd</sup>  | 1.4 Modes of Failure (By elastic deflection, general yielding & fracture)                                                    |  |  |  |
|                                           | 4 <sup>th</sup>  | 1.4 Modes of Failure (By elastic deflection, general yielding & fracture)                                                    |  |  |  |
| 3 <sup>rd</sup>                           | 1 <sup>st</sup>  | 1.5 State the factors governing the design of machine elements.                                                              |  |  |  |
|                                           | 2 <sup>nd</sup>  | 1.5 State the factors governing the design of machine elements.                                                              |  |  |  |
|                                           | 3 <sup>rd</sup>  | 1.6 Describe design procedure.                                                                                               |  |  |  |
|                                           | 4 <sup>th</sup>  | 1.6 Describe design procedure.                                                                                               |  |  |  |
| <b>4</b> <sup>th</sup>                    | 1 <sup>st</sup>  | 2.1 Joints and their classification.                                                                                         |  |  |  |
|                                           | 2 <sup>nd</sup>  | 2.2 State types of welded joints                                                                                             |  |  |  |
|                                           | 3 <sup>rd</sup>  | 2.3 State advantages of welded joints over other joints.                                                                     |  |  |  |
|                                           | 4 <sup>th</sup>  | 2.4 Design of welded joints for eccentric loads.                                                                             |  |  |  |
| 5 <sup>th</sup>                           | 1 <sup>st</sup>  | 2.5 State types of riveted joints and types of rivets                                                                        |  |  |  |
|                                           | 2 <sup>nd</sup>  | 2.6 Describe failure of riveted joints.                                                                                      |  |  |  |
|                                           | 3 <sup>rd</sup>  | 2.7 Determine strength & efficiency of riveted joints.                                                                       |  |  |  |
|                                           | 4 <sup>th</sup>  | 2.8 Design riveted joints for pressure vessel                                                                                |  |  |  |

| Week                    | Class Day       | Topics to be Covered                                                                                                                                                            |  |  |  |
|-------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <b>6</b> <sup>th</sup>  | 1 <sup>st</sup> | 2.8 Design riveted joints for pressure vessel                                                                                                                                   |  |  |  |
|                         | 2 <sup>nd</sup> | 2.9 Solve numerical on Welded Joint and Riveted Joints.                                                                                                                         |  |  |  |
|                         | 3 <sup>rd</sup> | 2.9 Solve numerical on Welded Joint and Riveted Joints.                                                                                                                         |  |  |  |
|                         | 4 <sup>th</sup> | 2.9 Solve numerical on Welded Joint and Riveted Joints.                                                                                                                         |  |  |  |
| <b>7</b> <sup>th</sup>  | 1 <sup>st</sup> | 3.1 State function of shafts                                                                                                                                                    |  |  |  |
|                         | 2 <sup>nd</sup> | 3.2 State materials for shafts                                                                                                                                                  |  |  |  |
|                         | 3 <sup>rd</sup> | 3.3 Design solid & hollow shafts to transmit a given power at given rpm based on a) Strength: (i) Shear stress, (ii) Combined bending tension; b) Rigidity: (i) Angle of        |  |  |  |
|                         | 4 <sup>th</sup> | 3.3 Design solid & hollow shafts to transmit a given power at given rpm based on a) Strength: (i) Shear stress, (ii) Combined bending tension; b) Rigidity: (i) Angle of twist, |  |  |  |
| 8 <sup>th</sup>         | 1 <sup>st</sup> | 3.4 State standard size of shaft as per I.S.                                                                                                                                    |  |  |  |
|                         | 2 <sup>nd</sup> | 3.5 State function of keys, types of keys & material of keys.                                                                                                                   |  |  |  |
|                         | 3 <sup>rd</sup> | 3.6 Describe failure of key, effect of key way.                                                                                                                                 |  |  |  |
|                         | 4 <sup>th</sup> | 3.7 Design rectangular sunk key considering its failure against shear                                                                                                           |  |  |  |
| 9 <sup>th</sup>         | 1 <sup>st</sup> | 3.8 Design rectangular sunk key by using empirical relation for given diameter                                                                                                  |  |  |  |
|                         | 2 <sup>nd</sup> | 3.9 State specification of parallel key, gib-head key, taper key as per I.S.                                                                                                    |  |  |  |
|                         | 3 <sup>rd</sup> | 3.10 Solve numerical on Design of Shaft and keys.                                                                                                                               |  |  |  |
|                         | 4 <sup>th</sup> | INTERNAL ASSESMENT                                                                                                                                                              |  |  |  |
|                         | 1 <sup>st</sup> | INTERNAL ASSESMENT                                                                                                                                                              |  |  |  |
| <b>10</b> <sup>th</sup> | 2 <sup>nd</sup> | 4.1 Design of Shaft Coupling                                                                                                                                                    |  |  |  |
|                         | 3 <sup>rd</sup> | 4.2 Requirements of a good shaft coupling                                                                                                                                       |  |  |  |
|                         | 4 <sup>th</sup> | 4.3 Types of Coupling                                                                                                                                                           |  |  |  |

| Week                    | Class Day       | Topics to be Covered                                                     |  |  |  |
|-------------------------|-----------------|--------------------------------------------------------------------------|--|--|--|
| 11 <sup>th</sup>        | 1 <sup>st</sup> | 4.3 Types of Coupling                                                    |  |  |  |
|                         | 2 <sup>nd</sup> | 4.4 Design of Sleeve or Muff-Coupling.                                   |  |  |  |
|                         | 3 <sup>rd</sup> | 4.4 Design of Sleeve or Muff-Coupling.                                   |  |  |  |
|                         | 4 <sup>th</sup> | 4.5 Design of Clamp or Compression Coupling                              |  |  |  |
|                         | 1 <sup>st</sup> | 4.5 Design of Clamp or Compression Coupling                              |  |  |  |
| 12 <sup>th</sup>        | 2 <sup>nd</sup> | 4.6 Solve simple numerical on above.                                     |  |  |  |
|                         | 3 <sup>rd</sup> | 4.6 Solve simple numerical on above.                                     |  |  |  |
|                         | 4 <sup>th</sup> | 4.6 Solve simple numerical on above.                                     |  |  |  |
| 13 <sup>th</sup>        | 1 <sup>st</sup> | 5.1 Materials used for helical spring                                    |  |  |  |
|                         | 2 <sup>nd</sup> | 5.2 Standard size spring wire. (SWG).                                    |  |  |  |
|                         | 3 <sup>rd</sup> | 5.3 Terms used in compression spring.                                    |  |  |  |
|                         | 4 <sup>th</sup> | 5.3 Terms used in compression spring.                                    |  |  |  |
|                         | 1 <sup>st</sup> | 5.4 Stress in helical spring of a circular wire.                         |  |  |  |
|                         | 2 <sup>nd</sup> | 5.4 Stress in helical spring of a circular wire.                         |  |  |  |
| <b>14</b> <sup>th</sup> | 3 <sup>rd</sup> | 5.5 Deflection of helical spring of circular wire.                       |  |  |  |
|                         | 4 <sup>th</sup> | 5.5 Deflection of helical spring of circular wire.                       |  |  |  |
| <b>15</b> <sup>th</sup> | 1 <sup>st</sup> | 5.6 Surge in spring                                                      |  |  |  |
|                         | 2 <sup>nd</sup> | 5.7 Solve numerical on design of closed coil helical compression spring. |  |  |  |
|                         | 3 <sup>rd</sup> | 5.7 Solve numerical on design of closed coil helical compression spring. |  |  |  |
|                         | 4 <sup>th</sup> | 5.7 Solve numerical on design of closed coil helical compression spring. |  |  |  |