

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE & Affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: TH-4 (THERMAL ENGG-II)

CHAPTER WISE DISTRIBUTION OF PERIODS

SL NO	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	NO. of periods actually needed
1	Performance of I. C engine	08	08
2	Air Compressor	12	12
3	Properties of steam	12	12
4	Steam Generator	12	12
5	Vapor power cycle	08	08
6	Heat Transfer	08	08
TOTAL		60	60

Discipline:	Semester: 4 th	Name of the Teaching Faculty: Er. MANORANJAN BEHERA	
MECHANICAL ENGG		SESSION : 2023-24 EXAMINATION : 2024 (S)	
Week	Class Day	Theory / Practical Topics	
	1 st	Performance of I.C engine	
1 st	2 nd	Define mechanical efficiency, Indicated thermal efficiency, Relative Efficiency	
1	3 rd	brake thermal efficiency overall efficiency Mean effective pressure & specific fuel consumption	
	4 th	Define air-fuel ratio & calorific value of fuel.	
	1 st	Work out problems to determine efficiencies & specific fuel consumption.	
2 nd	2 nd	Work out problems to determine efficiencies & specific fuel consumption.	
2 nd	3 rd	Work out problems to determine efficiencies & specific fuel consumption.	
	4 th	CLASS TEST	
	1 st	Air Compressor, Classify air compressor & principle of operation	
3^{rd}	2 nd	Explain functions of compressor & industrial use of compressor air	
	3 rd	Describe the parts and working principle of reciprocating Air compressor	
	4 th	Describe the parts and working principle of reciprocating Air compressor	
	1 st	Explain the terminology of reciprocating compressor such as bore, stroke, pressure ratio free air delivered	
4 th	2 nd	Volumetric efficiency of reciprocating compressor	
-	3 rd	Derive the work done of single stage compressor with clearance	
	4 th	Derive the work done of single stage compressor without clearance	
⊏th	1 st	Derive the work done of two stage compressor with clearance	
5 th	2 nd	Derive the work done of two stage compressor without clearance	
	3 rd	Solve simple problems	

	4 th	CLASS TEST	
	1 st	Properties of Steam, Difference between gas & vapours.	
	2 nd	Formation of steam.	
6 th	3rd	Representation on P-V, T-S, H-S, & T-H diagram.	
	4 th	Representation on P-V, T-S, H-S, & T-H diagram.	
	1 st	Definition & Properties of Steam.	
_,	2 nd	Use of steam table & mollier chart for finding unknown properties.	
7 th	3 rd	Non flow & flow process of vapour.	
	4 th	P-V, T-S & H-S, diagram	
	1 st	P-V, T-S & H-S, diagram	
Oth	2 nd	Determine the changes in properties & solve simple numerical.	
8 th	3 rd	Determine the changes in properties & solve simple numerical.	
	4 th	Internal Exam	
	1 st	Steam Generator, Classification & types of Boiler, Important terms for Boiler	
Oth	2 nd	Comparison between fire tube & Water tube Boiler.	
9 th	3 rd	Description & working of common boilers (Cochran)	
	4 th	Description & working of common boilers (Lancashire)	
	1 st	Description & working of common boilers(Babcock & Wilcox Boiler)	
1 Oth	2 nd	Boiler Draught (Forced, induced & balanced)	
10^{th}	3rd	Boiler mountings	
	4 th	Boiler mountings	
	1 st	Boiler mountings	
	2 nd	Boiler accessories.	
11 th	3 rd	Boiler accessories.	
	4 th	CLASS TEST	
12 th	1 st	Steam Generator, Carnot cycle with vapour.	
	2 nd	Derive work & efficiency of the cycle	

	3rd	Rankine cycle. Representation in P-V, T-S & h-s diagram		
	4 th	Derive Work & Efficiency.		
	1 st	Effect of Various end conditions in Rankine cycle		
	2 nd	Reheat cycle & regenerative Cycle.		
13 th	3rd	Reheat cycle & regenerative Cycle.		
	4 th	Solve simple numerical on Carnot vapour Cycle & Rankine Cycle.		
	1 st	Heat Transfer, Modes of Heat Transfer (Conduction, Convection, Radiation).		
14 th	2 nd	Fourier law of heat conduction and thermal conductivity (k). Newton's laws of cooling.		
14	3rd	Radiation heat transfer (Stefan, Boltzmann & Kirchhoff's law) only statement, no derivation & no numerical problem		
	4 th	Radiation heat transfer (Stefan, Boltzmann & Kirchhoff's law) only statement, no derivation & no numerical problem		
	1 st	Black body Radiation, Definition of Emissivity, absorptivity, & transmissibility.		
15^{th}	2 nd	Black body Radiation, Definition of Emissivity, absorptivity, & transmissibility.		
	3 rd	Black body Radiation, Definition of Emissivity, absorptivity, & transmissibility.		
	4 th	CLASS TEST		