

## NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)



## **LESSON PLAN**

**SUBJECT: Th-3 (DIGITAL ELECTRONICS & MICROPROCESSOR)** 

## **CHAPTER WISE DISTRIBUTION OF PERIODS**

| SI.No. | Name of the chapter as per the Syllabus | No. of<br>Periods<br>as per the<br>Syllabus | No. of periods actually needed |
|--------|-----------------------------------------|---------------------------------------------|--------------------------------|
| 1      | Basics Of Digital Electronics           | 15                                          | 15                             |
| 2      | Combinational Logic Circuits            | 15                                          | 15                             |
| 3      | Sequential Logic Circuits               | 15                                          | 8                              |
| 4      | 8085 Microprocessor                     | 20                                          | 20                             |
| 5      | Interfacing And Support Chips 10        |                                             |                                |
|        | TOTAL                                   | 75                                          | 75                             |

| Discipline:<br>EE | Semester: 5 <sup>th</sup> | Name of the Teaching Faculty: Er. BISWAJIT PARIDA                                                                                       |  |
|-------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| Week              | Class Day                 | Theory / Practical Topics                                                                                                               |  |
| 1 <sup>st</sup>   | 1 <sup>st</sup>           | 1. BASICS OF DIGITAL ELECTRONICS 1.1 Binary, Octal, Hexadecimal number systems and compare with Decimal system.                         |  |
|                   | 2 <sup>nd</sup>           | 1.1 Binary, Octal, Hexadecimal number systems and compare with Decimal system                                                           |  |
|                   | 3 <sup>rd</sup>           | 1.1 Binary, Octal, Hexadecimal number systems and compare with Decimal system                                                           |  |
|                   | 4 <sup>th</sup>           | 1.2 Binary addition, subtraction, Multiplication and Division.                                                                          |  |
|                   | 5 <sup>th</sup>           | 1.3 1's complement and 2's complement numbers for a binary number                                                                       |  |
|                   | 1 <sup>st</sup>           | 1.4 Subtraction of binary numbers in 2's complement method.                                                                             |  |
|                   | 2 <sup>nd</sup>           | 1.5 Use of weighted and Un-weighted codes & write Binary equivalent number for a number in 8421, Excess-3 and Gray Code and vice-versa. |  |
| 2 <sup>nd</sup>   | 3 <sup>rd</sup>           | 1.6 Importance of parity Bit.                                                                                                           |  |
|                   | 4 <sup>th</sup>           | 1.7 Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.                                                              |  |
|                   | 5 <sup>th</sup>           | 1.7 Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.                                                              |  |
|                   | 1 <sup>st</sup>           | 1.8 Realize AND, OR, NOT operations using NAND, NOR gates.                                                                              |  |
| 3 <sup>rd</sup>   | 2 <sup>nd</sup>           | 1.9 Different postulates and De-Morgan's theorems in Boolean algebra.                                                                   |  |
|                   | 3 <sup>rd</sup>           | 1.10 Use Of Boolean Algebra For Simplification Of Logic Expression                                                                      |  |
|                   | 4 <sup>th</sup>           | 1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression Using K-Map.                                       |  |
|                   | 5 <sup>th</sup>           | 1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression Using K-Map.                                       |  |

|                 | 1st             | 2. COMBINATIONAL LOGIC CIRCUITS                                                              |
|-----------------|-----------------|----------------------------------------------------------------------------------------------|
| 4 <sup>th</sup> | 130             | 2.1 Give the concept of combinational logic circuits.                                        |
|                 | 2nd             | 2.2 Half adder circuit and verify its functionality using truth table.                       |
|                 | 3rd             | 2.2 Half adder circuit and verify its functionality using truth table.                       |
|                 | 4th             | 2.3 Realize a Half-adder using NAND gates only and NOR gates only.                           |
|                 | 5th             | 2.4 Full adder circuit and explain its operation with truth table.                           |
| 5th             | 1st             | 2.4 Full adder circuit and explain its operation with truth table.                           |
|                 | 2 <sup>nd</sup> | 2.5 Realize full-adder using two Half-adders and an OR – gate and write truth table          |
|                 | 3 <sup>rd</sup> | 2.6 Full subtractor circuit and explain its operation with truth table.                      |
|                 | 4 <sup>th</sup> | 2.6 Full subtractor circuit and explain its operation with truth table.                      |
|                 | 5 <sup>th</sup> | 2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer                                  |
|                 | 1 <sup>st</sup> | 2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer                                  |
|                 | 2 <sup>nd</sup> | 2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder.                                       |
| 6 <sup>th</sup> | 3 <sup>rd</sup> | 2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder.                                       |
|                 | 4 <sup>th</sup> | 2.9 Working of Two bit magnitude comparator.                                                 |
|                 | 5 <sup>th</sup> | 2.9 Working of Two bit magnitude comparator.                                                 |
|                 | 1 <sup>st</sup> | 3. SEQUENTIAL LOGIC CIRCUITS                                                                 |
|                 |                 | 3.1 Give the idea of Sequential logic circuits.                                              |
| 7 <sup>th</sup> | 2 <sup>nd</sup> | 3.2 State the necessity of clock and give the concept of level clocking and edge triggering, |
|                 | 3 <sup>rd</sup> | 3.3 Clocked SR flip flop with preset and clear inputs.                                       |
|                 | 4th             | 3.5 Construct level clocked JK flip flop using S-R flip-flop and explain with truth table    |
|                 | 5 <sup>th</sup> | 3.6 Concept of race around condition and study of master slave JK flip flop.                 |
| 8 <sup>th</sup> | 1 <sup>st</sup> | 3.7 Give the truth tables of edge triggered D and T flip flops and draw their symbols.       |
|                 | 2 <sup>nd</sup> | <ul><li>3.8 Applications of flip flops.</li><li>3.9 Define modulus of a counter</li></ul>    |
|                 | 3 <sup>rd</sup> | 3.10 4-bit asynchronous counter and its timing diagram.                                      |
|                 | 4 <sup>th</sup> | 3.10 4-bit asynchronous counter and its timing diagram.                                      |
|                 | 5 <sup>th</sup> | 3.11 Asynchronous decade counter.                                                            |
|                 |                 |                                                                                              |

| 9 <sup>th</sup>  | 1 <sup>st</sup> | 3.12 4-bit synchronous counter.                                                     |
|------------------|-----------------|-------------------------------------------------------------------------------------|
|                  | 2 <sup>nd</sup> | 3.13 Distinguish between synchronous and asynchronous counters.                     |
|                  | 3rd             | 3.14 State the need for a Register and list the four types of registers.            |
|                  | 4 <sup>th</sup> | 3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.   |
|                  | 5 <sup>th</sup> | 3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.   |
| 10 <sup>th</sup> | 1 <sup>st</sup> | 4. 8085 MICROPROCESSOR 4.1 Introduction to Microprocessors, Microcomputers          |
|                  | 2 <sup>nd</sup> | 4.2 Architecture of Intel 8085A Microprocessor and description of each block.       |
|                  | 3 <sup>rd</sup> | 4.2 Architecture of Intel 8085A Microprocessor and description of each block.       |
|                  | 4 <sup>th</sup> | 4.2 Architecture of Intel 8085A Microprocessor and description of each block.       |
|                  | 5 <sup>th</sup> | 4.3 Pin diagram and description.                                                    |
|                  | 1 <sup>st</sup> | 4.3 Pin diagram and description.                                                    |
| 11 <sup>th</sup> | 2 <sup>nd</sup> | 4.3 Pin diagram and description.                                                    |
|                  | 3 <sup>rd</sup> | 4.4 Stack, Stack pointer & stack top                                                |
|                  | 4 <sup>th</sup> | 4.5 Interrupts                                                                      |
|                  | 5 <sup>th</sup> | 4.6 Opcode & Operand,                                                               |
| 12 <sup>th</sup> | 1 <sup>st</sup> | 4.7 Differentiate between one byte, two byte & three byte instruction with example. |
|                  | 2 <sup>nd</sup> | 4.8 Instruction set of 8085 example                                                 |
|                  | 3 <sup>rd</sup> | 4.9 Addressing mode                                                                 |
|                  | 4 <sup>th</sup> | 4.9 Addressing mode                                                                 |
|                  | 5 <sup>th</sup> | 4 .10 Fetch Cycle, Machine Cycle, Instruction Cycle, T-State                        |
|                  | 1 <sup>st</sup> | 4.11 Timing Diagram for memory read, memory write, I/O read, I/O write              |

| 13 <sup>th</sup> | 2 <sup>nd</sup> | 4.11 Timing Diagram for memory read, memory write, I/O read, I/O write                                     |
|------------------|-----------------|------------------------------------------------------------------------------------------------------------|
|                  | 3 <sup>rd</sup> | 4.12 Timing Diagram for 8085 instruction                                                                   |
|                  | 4 <sup>th</sup> | 4.13 Counter and time delay.                                                                               |
|                  | 5 <sup>th</sup> | 4. 14 Simple assembly language programming of 8085.                                                        |
| 14 <sup>th</sup> | 1 <sup>st</sup> | 5. INTERFACING AND SUPPORT CHIPS                                                                           |
|                  |                 | 5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping                                               |
|                  | 2 <sup>nd</sup> | 5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping                                               |
|                  | 3 <sup>rd</sup> | 5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping                                               |
|                  | 4 <sup>th</sup> | 5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255 |
|                  | 5 <sup>th</sup> | 5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255 |
| 15 <sup>th</sup> | 1 <sup>st</sup> | 5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255 |
|                  | 2 <sup>nd</sup> | 5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255 |
|                  | 3 <sup>rd</sup> | 5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller     |
|                  | 4 <sup>th</sup> | 5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller     |
|                  | 5 <sup>th</sup> | 5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller     |