

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-2 (EBNERGY CONVERSION-II)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	ALTERNATOR(SYNCHRONOUS GENERATOR)	14	14
2	SYNCHRONOUS MOTOR	8	11
3	INDUCTION MOTOR	14	13
4	SINGLE PHASE INDUCTION MOTOR	8	9
5	COMMUTATOR MOTORS	6	3
6	SPECIAL ELCTRICAL MACHINE	5	6
7	THREE PHASE TRANSFORMERS	5	4
8	TOTAL	60	60

Discipline: ELECTRICAL ENGG.	Semester: 5TH	Name of the Teaching Faculty: Er. Bijaya Kumar Behera	
Week	Class Day	Theory Topics	
1 st	1 st	ALTERNATOR:	
		1.1. Types of alternator and their constructional features.	
	2 nd	1.2. Basic working principle of alternator and the relation between speed and frequency.	
	3 rd	1.3. Terminology in armature winding and expressions for winding factors (Pitch factor, Distribution factor).	
	4 th	1.4. Explain harmonics, its causes and impact on winding factor.	
	1 st	1.5. E.M.F equation of alternator. (Solve numerical problems).	
	2 nd	1.5. E.M.F equation of alternator. (Solve numerical problems).	
2 nd	3 rd	1.6. Explain Armature reaction and its effect on emf at different power factor of load.	
	4 th	1.7. The vector diagram of loaded alternator. (Solve numerical problems)	
3 rd	1 st	1.7. The vector diagram of loaded alternator. (Solve numerical problems)	
	2 nd	1.8. Testing of alternator (Solve numerical problems)	
		1.8.1. Open circuit test.	
	3 rd	1.8.2. Short circuit test.	
	4 th	1.9. Determination of voltage regulation of Alternator by direct loading and synchronous impedance method. (Solve numerical problems)	

4 th	1 st	1.10. Parallel operation of alternator using synchro-scope and dark & bright lamp method.		
	2 nd	1.11. Explain distribution of load by parallel connected alternators.		
	3 rd	SYNCHRONOUS MOTOR:		
		2.1. Constructional feature of Synchronous Motor.		
	4 th	2.2. Principles of operation, concept of load angle		
5 th	1 st	2.3. Derive torque, power developed.		
	2 nd	2.4. Effect of varying load with constant excitation.		
	3 rd	2.5. Effect of varying excitation with constant load.		
	4 th	2.6. Power angle characteristics of cylindrical rotor motor.		
6 th	1 st	2.7. Explain effect of excitation on Armature current and power factor.		
	2 nd	2.8. Hunting in Synchronous Motor.		
	3 rd	2.9. Function of Damper Bars in synchronous motor and generator.		
	4 th	2.10. Describe method of starting of Synchronous motor.		
7 th	1 st	2.11. State application of synchronous motor.		
	2 nd	THREE PHASE INDUCTION MOTOR:		
		3.1. Production of rotating magnetic field.		
	3 rd	3.2. Constructional feature of Squirrel cage and Slip ring induction motors.		
	4 th	3.3. Working principles of operation of 3-phase Induction motor.		

8 th	1 st	3.4. Define slip speed, slip and establish the relation of slip with rotor quantities.	
	2 nd	3.5. Derive expression for torque during starting and running எழுத்து அது செல்ல conditions for maximum torque. (solve	
	3 rd	3.6. Torque-slip characteristics.	
	4 th	3.7. Derive relation between full load torque and starting torque etc. (solve numerical problems)	
9 th	1 st	3.8. Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss. (solve numerical problems)	
	2 nd	3.9. Methods of starting and different types of starters used for three phase Induction motor.	
	3 rd	3.10. Explain speed control by Voltage Control, Rotor resistance control, Pole changing, frequency control methods.	
	4 th	3.11. Plugging as applicable to three phase induction motor.	
10 th	1 st	3.12. Describe different types of motor enclosures.	
	2 nd	3.13. Explain principle of Induction Generator and state its applications.	
	3 rd	SINGLE PHASE INDUCTION MOTOR:	
		4.1. Explain Ferrari's principle.	
	4 th	4.2. Explain double revolving field theory and Cross-field theory to analyze starting torque of 1-phase induction motor.	
11 st	1 st	4.3. Explain Working principle, Torque speed characteristics, page-page-scharacteristics and application of following single	
	2 nd	4.3.1. Split phase motor.	
	3 rd	4.3.2. Capacitor Start motor.	
	4 th	4.3.3. Capacitor start, capacitor run motor.	

12 nd	1 st	4.3.4. Permanent capacitor type motor	
	2 nd	4.3.5. Shaded pole motor.	
	3 rd	4.4. Explain the method to change the direction of rotation of above motors.	
	4 th	COMMUTATOR MOTORS:	
		5.1. Construction, working principle, running characteristic and application of single phase series motor.	
13 rd	1 st	5.2. Construction, working principle and application of Universal motors.	
	2 nd	5.3. Working principle of Repulsion start Motor, Repulsion start Induction run motor, Repulsion Induction motor.	
	3 rd	SPECIAL ELECTRICAL MACHINE:	
		6.1. Principle of Stepper motor.	
	4 th	6.2. Classification of Stepper motor.	
14 th	1 st	6.3. Principle of variable reluctant stepper motor.	
	2 nd	6.4. Principle of Permanent magnet stepper motor.	
	3 rd	6.5. Principle of hybrid stepper motor.	
	4 th	6.6. Applications of Stepper motor.	
15 th	1 st	THREE PHASE TRANSFORMERS:	
		7.1. Explain Grouping of winding, Advantages.	
	2 nd	7.2. Explain parallel operation of the three phase transformers.	
	3 rd	7.3. Explain tap changer (On/Off load tap changing)	
	4 th	7.4. Maintenance Schedule of Power Transformers.	