NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) ## (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** ## **SUBJECT: Th3. ENGINEERING MATHEMATICS – II** | | CHAPTER WISE DISTRIBUTION OF PERIODS | | | |--------|---|------------------------------------|--------------------------------| | Sl.No. | Name of the chapter as per the Syllabus | No. of Periods as per the Syllabus | No. of periods actually needed | | 1 | Vector Algebra | 15 | 21 | | 2 | Limits and Continuity | 12 | 22 | | 3 | Derivatives | 21 | 18 | | 4 | Integration | 15 | 10 | | 5 | Differential Equation | 12 | 04 | | | TOTAL | 75 | 75 | | Discipline:
COMMONTO | Semester:
2nd | Name of the Teaching Faculty: Mr. SUBAS CHANDRA DASH | | |-------------------------|------------------|---|--| | ALL | | Session:2023-24 Examiantion-2024(S) | | | Week | Class Day | Theory / Practical Topics | | | | 1 st | 1) VECTOR ALGEBRA a) Introduction | | | | 2 nd | b) Types of vectors (null vector, parallel vector , collinear vectors) (in component form) | | | 1ST | 3 rd | b) Types of vectors (null vector, parallel vector , collinear vectors) (in component form) | | | | 4 th | c) Representation of vector | | | | 5 th | c) Representation of vector | | | | 1 st | d) Magnitude and direction of vectors | | | | 2 nd | d) Magnitude and direction of vectors | | | 2ND | 3 rd | e) Addition and subtraction of vectors | | | | 4 th | e) Addition and subtraction of vectors | | | | 5 th | f) Position vector | | | | 1 st | f) Position vector | | | | 2 nd | f) Position vector | | | 3RD | 3 rd | g) Scalar product of two vectors | | | | 4 th | | | | | | g) Scalar product of two vectors | | | | 5 th | h) Geometrical meaning of dot product | | | 4ТН | 1 st | h) Geometrical meaning of dot product | |-----|-----------------|--| | | 2 nd | i) Angle between two vectors | | | 3 rd | j) Scalar and vector projection of two vectors | | | 4 th | j) Scalar and vector projection of two vectors | | | 5 th | k) Vector product and geometrical meaning (Area of triangle and parallelogram) | | | 1 st | k) Vector product and geometrical meaning (Area of triangle and parallelogram) | | 5ТН | 2 nd | LIMITS AND CONTINUITY a) Definition of function, based on set theory | | | 3 rd | LIMITS AND CONTINUITY a) Definition of function, based on set theory | | | 4 th | b) Types of functions | | | 5 th | b) Types of functions | | | 1 st | i) Constant function | | | 2 nd | i) Constant function | | 6ТН | 3 rd | i) Constant function | | | 4 th | ii) Identity function | | | 5 th | ii) Identity function | | 7ТН | 1 st | ii) Identity function | |--------------|------------------------|---| | | 2 nd | iii) Absolute value function | | | 3 rd | iii) Absolute value function | | | 4 th | iii) Absolute value function | | | 5 th | iv)The Greatest integer function | | 8ТН | 1 st | iv)The Greatest integer function | | | 2 nd | v) Trigonometric function | | | 3 rd | vi) Exponential function | | | 4 th | vii) Logarithmic function | | | 5 th | c) Introduction of limit | | 9ТН | 1 st | d) Existence of limit | | | 2 nd | e) Methods of evaluation of limit | | | 3 rd | e) Definition of continuity of a function at a point and problems based on it | | | 4 th | DERIVATIVES a) Derivative of a function at a point | | | 5 th | DERIVATIVES a) Derivative of a function at a point | | 10 TH | 1 st | b) Algebra of derivative | | | 2 nd | c) Derivative of standard functions | | | 3 rd | c) Derivative of standard functions | | | 4 th | d) Derivative of composite function (Chain Rule) | | | 5 th | d) Derivative of composite function (Chain Rule) | | 11TH | 1 st | e) Methods of differentiation of | |------|-----------------|---| | | 2 nd | i) Parametric function ii) Implicit function | | | 3 rd | i) Parametric function ii) Implicit function | | | 4 th | iii) Logarithmic function iv) a function with respect to another function | | | 5 th | iii) Logarithmic function iv) a function with respect to another function | | 12TH | 1 st | iii) Logarithmic function iv) a function with respect to another function | | | 2 nd | f) Applications of Derivative | | | 3 rd | f) Applications of Derivative | | | 4 th | i) Successive Differentiation (up to second order) ii) Partial Differentiation (function of two variables up to second order) | | | 5 th | i) Successive Differentiation (up to second order) ii) Partial Differentiation (function of two variables up to second order) | | 13TH | 1 st | g) Problems based on above | | | 2 nd | INTEGRATION a) Definition of integration as inverse of differentiation | | | 3 rd | INTEGRATION a) Definition of integration as inverse of differentiation | | | 4 th | b) Integrals of standard functions | | | 5 th | c) Methods of integration i) Integration by substitution ii) Integration by parts | | 14 | 1 st | c) Methods of integration i) Integration by substitution ii) Integration by parts | | 14TH | 2 nd | d) Integration of the following forms | | | |---------------|-----------------|---|--|--| | | 3 rd | e) Definite integral, properties of definite integrals | | | | | 4 th | e) Definite integral, properties of definite integrals | | | | | 5 th | f) Application of integration i) Area enclosed by a curve | | | | | 5 | and X – axis ii) Area of a circle with centre at origin | | | | | 1 st | f) Application of integration i) Area enclosed by a curve | | | | | | and X – axis ii) Area of a circle with centre at origin | | | | | 2 nd | 5) DIFFERENTIAL EQUATION a) Order and degree of a | | | | | | differential equation | | | | 15 T U | 3 rd | 5) DIFFERENTIAL EQUATION a) Order and degree of a | | | | 15TH | | differential equation | | | | | 4 th | b) Solution of differential equation i) 1st order and 1st | | | | | | degree equation by the method of separation of variables | | | | | 5 th | b) Solution of differential equation i) 1st order and 1st | | | | | | degree equation by the method of separation of variables | | |