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Magnetic Circuits :

Introduction : Magnetic flux lines always form closed loops. The closed path followed by the
flux lines is called a magnetic circuit. Thus, a magnetic circuit provides a path for
magnetic flux, just as an electric circuit provides a path for the flow of electric current.
In general, the term magnetic circuit applies to any closed path in space, but in the
analysis of electro-mechanical and electronic system this term is specifically used for
circuits containing a major portion of ferromagnetic materials. The study of magnetic
circuit concepts is essential in the design, analysis and application of electromagnetic

devices like transformers, rotating machines, electromagnetic relays etc.

Magnetomotive Force (M.M.F) :

Flux is produced round any current — carrying coil. In order to produce the required flux
density, the coil should have the correct number of turns. The product of the current and

the number of turns is defined as the coil magneto motive force (m.m.f).

If I = Current through the coil (A)

N = Number of turns in the coil.

Magnetomotive force = Current x turns

SoMM.F=1XN

The unit of M.M.F. is ampere—turn (AT) but it is taken as Ampere(A) since N

has no dimensions.

Magnetic Field Intensity

Magnetic Field Intensity is defined as the magneto-motive force per unit length of the magnetic
flux path. Its symbol is H.

Magnetomotive force
Magnetic field Intensity (H) =

Mean length of the magnetic path




SH==A/m [/

Where / is the mean length of the magnetic circuit in meters. Magnetic field intensity is also

called magnetic field strength or magnetizing force.

Permeability :-

Every substance possesses a certain power of conducting magnetic lines of force.

For example, iron is better conductor for magnetic lines of force than air (vaccum)
. Permeability of a material () is its conducting power for magnetic lines of force.

It is the ratio of the flux density. (B) Produced in a

material to the magnetic filed strength (H) 1.e. 4 = B/
H

Reluctance :

Reluctance (s) is akin to resistance (which limits the electric Current). Flux in a
magnetic circuit is limited by reluctance. Thus reluctance(s) is a measure of the

opposition offered by a magnetic circuit to the setting up of the flux.

Reluctance is the ratio of magneto motive force to the flux. Thus
S= Mm/f/
0}

Its unit is ampere turns per webber (or AT/wb)
Permeance:-
The reciprocal of reluctance is called the permeance (symbol A).

Permeance (A) =1/S  wb/AT Turn

T has no unit.

Hence permeance is expressed in wb/A or Henerys(H).
Electric Field versus Magentic Field.
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B.H. Curve :

Place a piece of an unmagnetised iron bar AB within the field of a solenoid to
magnetise it. The field H produced by the solenoid, is called magnetising field,
whose value can be altered (increased or decreased) by changing (increasing or
decreasing) the current through the solenoid. If we increase slowly the value of
magnetic field (H) from zero to maximum value, the value of flux density (B)
varies along 1 to 2 as shown in the figure and the magnetic materials (i.e iron bar)
finally attains the maximum value of flux density (Bm) at point 2 and thus

becomes magnetically saturated.

Fig. 2.1

Now if value of H is decreased slowly (by decreasing the current in the solenoid)
the corresponding value of flux density (B) does not decreases along 2-1 but
decreases some what less rapidly along 2 to 3. Consequently during the reversal
of magnetization, the value of B is not zero, but is '13' at H= 0. In other wards,
during the period of removal of magnetization force (H), the iron bar is not

completely demagnetized.




In order to demagnetise the iron bar completely, we have to supply the
demagnetisastion force (H) in the opposite direction (i.e. by reserving the direction
of current in the solenoid). The value of B is reduced to zero at point 4, when
H='14". This value of H required to clear off the residual magnetisation, is known

as coercive force 1.e. the tenacity with which the material holds to its magnetism.

If after obtaining zero value of magnetism, the value of H is made more negative,
the iron bar again reaches, finally a state of magnetic saturation at the point 5,
which represents negative saturation. Now if the value of H is increased from
negative saturation (= '45') to positive saturation ( = '12") a curve '5,6,7,2" is
obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle of

magnetisation and is known as hysteresis loop.

NETWORK ANALYSIS

Different terms are defined below:

1. Circuit: A circuit is a closed conducting path through which an electric current either
flow or is intended flow

2. Network: A combination of various electric elements, connected in any manner.
Whatsoever, is called an electric network

3. Node: it is an equipotential point at which two or more circuit elements are joined.
4. Junction: it is that point of a network where three or more circuit elements are joined.
5. Branch: itis a part of a network which lies between junction points.

6. Loop: Itis a closed path in a circuit in which no element or node is accounted more than
once.

7. Mesh: It is a loop that contains no other loop within it.

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of 1) circuit elements ii)
nodes iii) junction points iv) branches and v) meshes.

Rs




R4 Rs
p
Ry V3 Rsg
a D (§
Vi - Ro R
K h g f
R;3 Ro Va2

Solution: 1) no. of circuit elements = 12 (9 resistors + 3 voltage sources)
ii) no. of nodes =10 (a, b, c, d, e, f, g, h, k, p) iii) no. of junction

points =3 (b, e, h) iv) no. of branches = 5 (bcde, be, bh, befgh, bakh)

v) no. of meshes = 3 (abhk, bcde, befh)
3.2 MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding solutions
for a network. The suitability of either mesh or nodal analysis to a particular problem depends
mainly on the number of voltage sources or current sources .If a network has a large number of
voltage sources, it is useful to use mesh analysis; as this analysis requires that all the sources in
a circuit be voltage sources. Therefore, if there are any current sources in a circuit they are to
be converted into equivalent voltage sources,if, on the other hand, the network has more current
sources,nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits mesh analysis
is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface without
crossovers. A non-planar circuit cannot be drawn on a plane surface without a crossover.

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a
planar circuit which looks like a non-planar circuit. It has already been discussed that a loop is
a closed path. A mesh is defined as a loop which does not contain any other loops within it. To
apply mesh analysis, our first step is to check whether the circuit is planar or not and the second
is to select mesh currents. Finally, writing Kirchhoff's voltage law equations in terms of
unknowns and solving them leads to the final solution.




(a) (b) (c)
Figure 3.2

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the
network .Let us assume loop currents I; and Iowith directions as indicated in the figure.
Considering the loop abefa alone, we observe that current I is passing through R1, and (I1-12) is
passing through R By applying Kirchhoff’s voltage law, we can write

Vs. =liR1+Ro(I1-12) (3.1)

c
Vs
R4
f e d
Figure 3.3

Similarly, if we consider the second mesh bcdeb, the current I is passing through R3
and R4, and (I — Ir) is passing through R» By applying Kirchhoff’s voltage law around the
second mesh, we have

Ro (I>-I1) + R3I +R4lb=0 (3.2)

By rearranging the above equations,the corresponding mesh current equations are

T (RTTRZ) - ZRZ = Vs,



-IiR2 +(R2+R3+R4) 1,=0 (3.3)

By solving the above equations, we can find the currents [; and I If we observe Fig.3.3,
the circuit consists of five branches and four nodes, including the reference node.The number
of mesh currents is equal to the number of mesh equations.

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of
mesh current would be 5-(4-1)=2.

In general we have B number of branches and N number of nodes including the reference
node than number of linearly independent mesh equations M=B-(N-1).

Example 3.2 Write the mesh —\/\\
5Q 10Q
current equations in the circuit shown 10 T
\Y% 2Q
50v

in fig 3.4 and determine the currents.

Figure 3.4
Solution: Assume two mesh currents in the direction as indicated in fig. 3.5. The
mesh current equations are
5Q
—VV\V?
0V L I 10Q
T <« <«
2Q 50V

Figure 3.5

ST+ Z(1-12) = 10




1012+ 2(12-11) +50=0 (3.4)

We can rearrange the above equations as

7 -21=10

2L+121L=-50 (3.5)

By solving the above equations, we have [;=0.25 A, and [, =-4.125

Here the current in the second mesh I, is negative; that is the actual current I flows opposite to

the assumed direction of current in the circuit of fig .3.5.

Example 3.3 Determine the mesh current I in the circuit shown in fig.3.6.

50V

Figure 3.6

Solution: From the circuit, we can from the following three mesh equations

1051+5(11+12) +3(11-13) = 50 (3.6)
20 +5(L+h) +1(L+5) =10 (3.7
3(l3-h) +1([z+) =-5 (3.9)

Rearranging the above equations we get

1811+515-313=50 (3.9)
S5L+8L + I3=10 (3.10)
3L+ Lt 4l=-5 (3.11)

According to the Cramer’s rule
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~11=3.3A, ,=-0.997A, 5=1.47A

3.3 MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be written

by inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7

The loop equation are I;R1+ Ry(I1-I.) =V, R R3

Rs

Figure 3.7
Ro( b-I)+LR3=-V> 3.14
R4l3+R51=V; 3.15
Reordering the above equations, we have
(R1+R2)[1-Rob=V 3.16
-Roli+H(R2+R3)[r=-V> 3.17
(R4+R5)3=V; 3.18

The general mesh equations for three mesh resistive network can be written as

Riilt £ Riz2l2 + Ri3l3=Va 3.19
+ Roili+R2212 + R2313= Vb 3.20
+ R31l1 £ R32l2+Ra33l3= Ve 3.21

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 3.21 respectively,
the following observations can be taken into account.

1. The self-resistance in each mesh

2. The mutual resistances between all pairs of meshes and 3.
The algebraic sum of the voltages in each mesh.

The self-resistance of loop 1, Ri1=Ri+R2, is the sum of the resistances through which I;
passes.

The mutual resistance of loop 1, Ri2= -Ry, is the sum of the resistances common to loop
currents I and L. If the directions of the currents passing through the common resistances are
the same, the mutual resistance will have a positive sign; and if the directions of the currents
passing through the common resistance are opposite then the mutual resistance will have a

negative sign.




V.=V is the voltage which drives the loop 1. Here the positive sign is used if the
direction of the currents is the same as the direction of the source. If the current direction
is opposite to the direction of the source, then the negative sign is used.

Similarly R2=R>+R3 and R33=R4+Rs are the self-resistances of loops 2 and 3
respectively. The mutual resistances R13=0, R21=-R2, R23=0, R31=0, R3,=0 are the sums
of the resistances common to the mesh currents indicated in their subscripts.

V= -V2, V.= V; are the sum of the voltages driving their respective loops.

Example 3.4 write the mesh equation for the circuit shown in fig. 3.8

% )
R
10V <> - I 40
6Q
<—
L. [Gov |
Figure 3.8

Solution : the general equation for three mesh equation are

Ruili £ Ri2l2 £ Ri33=Va (3.22)
+ R2ili+R2212 £ R2313=Vb (3.23)
+ Raili £ R322+R331=Ve (3.24)

Consider equation 3.22




Ri1=self resistance of loop 1=(1Q+ 3 Q +6 Q) =10 Q

R12= the mutual resistance common to loop 1 and loop 2=-3 Q

Here the negative sign indicates that the currents are in opposite direction .
R13= the mutual resistance common to loop 1 & 3=-6 Q

V,=+10 V, the voltage the driving the loop 1.

Here he positive sign indicates the loop current I; is in the same direction as the source
element.

Therefore equation 3.22 can be written as
10 ;- 3L-61=10 V (3.25)

Consider Eq. 3.23
R21= the mutual resistance common to loop 1 and loop 2 =-3 Q

Rx= self resistance of loop 2=(3Q+ 2 Q +5 Q) =10 Q
R23=0, there is no common resistance between loop 2 and 3.

Vy=-5V, the voltage driving the loop 2.
Therefore Eq. 3.23 can be written as
=3I+ 10=-5V (3.26)
Consider Eq. 3.24
R31= the mutual resistance common to loop 1 and loop 3 =-6 Q
R3>=the mutual resistance common to loop 3 and loop 2 =0
Ra3= self resistance of loop 3=(6Q+ 4 Q) =10 Q
V.= the algebraic sum of the voltage driving loop 3
=(5 V+20V)=25 V (3.27)
Therefore, Eq3.24can be written as -61; + 10I3=25V
-611-31-613= 10V
-3Li+101=-5V
-611+1013=25V

3.4 SUPERMESH ANALYSIS

Suppose any of the branches in the network has a current source, then it is slightly difficult to
apply mesh analysis straight forward because first we should assume an unknown voltage across
the current source, writing mesh equation as before, and then relate the source current to the
assigned mesh currents. This is generally a difficult approach. On way to overcome this
difficulty is by applying the supermesh technique. Here we have to choose the kind of
supermesh. A supermesh is constituted by two adjacent loops that have a common current
source. As an example, consider the network shown in the figure 3.9.




— Ry |
+ Vv I I Ri Iz R4
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1 | 2 3

Figure 3.9
Here the current source I is in the common boundary for the two meshes 1 and 2. This current

source creates a supermesh, which is nothing but a combination of meshes 1 and 2.
Ril; + Ry(l-13)=V

Or Rili+R3L-R4ls=V

Considering mesh 3, we have

R3(I3-12)+ R4l3=0

Finally the current I from current source is equal to the difference between two mesh currents
Le.

Ii-I,=1

we have thus formed three mesh equations which we can solve for the three unknown currents
in the network.

Example 3.5. Determine the current in the 5€ resistor in the network given in Fig. 3.10

50v C

Figure 3.10

Solution: - From the first mesh, i.e. abcda, we have




50 = 10(L;-L) + 5(I;-Is)

Or 151;-1012-51=50

From the second and third meshes. we can form a super mesh
10(I-11)+2I +13+5(13-11)=0

Or -1511+12I,+615=0
The current source is equal to the difference between II and III mesh currents

Le. b-I;=2A (3.30)

Solving 3.28.,3.29 and 3.30. we have
[1=19.99A,Lb=17.33 A,and 5=1533 A

The current in the 5Q resistor =I; -I3

=19.99 -15.33=4.66A

The current in the 5Q resistor is 4.66A.

(3.28)

(3.29)

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the

currents, I, I and I,

10V

|
()
5

I

I I

<« «— 2Q
4—
I I 11
Figure 3.11

(I)mA 30 1Q

Solution ; In fig 3.11, the current source lies on the perimeter of the circuit, and the first
mesh is ignored. Kirchhoff's voltage law is applied only for second and third meshes .

From the second mesh, we have

3(I-11)+2(Io-13)+10 =0

Or 311 +51-215=-10 (3.31)




From the third mesh, we have
L+2(Iz-I) =10

Or 21L+315 =10 (3.32)
From the first mesh, L =10A (3.33)

From the abovethree equations, we get

I1=10A, =727, I3=8.18A

3.5 NODALANALYSIS

In the chapter I we discussed simple circuits containing only two nodes, including the reference
node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum node, then it
is possible to write N -1nodal equations by assuming N-1 node voltages. For example,al0 node circuit
requires nine unknown voltages and nine equations. Each node in a circuit can be assigned a number or
a letter. The node voltage is the voltage of a given node with respect to one particular node, called the
reference node, which we assume at zero potential. In the circuit shown in fig. 3.12, node 3 is assumed
as the Reference node. The voltage at node 1 is the voltage at that node with respect to node 3. Similarly,
the voltage at node 2 is the voltage at that node with respect to node 3. Applying Kirchhoff’s current law
at node 1, the current entering is the current leaving (See Fig.3.13)

1 2

R>

@ %Rl
3
> 1|y —
Ry

I

Figure 3.12

AN

Figure 3.13

Ii= Vi/R1+ (Vi-V2)/R2




Where Vi and V; are the voltages at node 1 and 2, respectively. Similarly, at node 2.the
current entering is equal to the current leaving as shown in fig. 3.14

Ro

Figure 3.14

(V2-V1)/R2 + V2/R3 + V2/(R4+R5) =0

Rearranging the above equations, we have
Vi[1/R1+1/R2]-V2(1/R2)= 11

-V1(1/R2) + Vo[ 1/R2+1/R3+1/(R4+R5)]=0

From the above equations we can find the voltages at each node.

Example 3.7 Determine the voltages at each node for the circuit shown in fig 3.15

3Q

Figure 3.15

Solution : At node 1, assuming that all currents are leaving, we have
(V1-10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0
Or WVI[I/1I0+1/3+1/5+1/3]-Vo[1/3+1/3]=1
0.96V1-0.66V2=1 (3.36)
Atnode 2, assuming that all currents are leaving except the current from current source, we have
(V2-V1)/3+ (V2-V1)/3+ (V2-V3)/2 =5
-V1[2/3]+V2[1/3 +1/3 + 1/2]-V3(1/2) =5
-0.66V+1.16V2-0.5V3=5 (3.37)

At node 3 assuming all currents are leaving, we have

(V3-V2)/2 + V3/1 + V3/6 =0




-0.5V2 + 1.66V3=0 (3.38)

Applying Cramer’s rule we get

[1-066 0 ]

5 116 =05

|0 -0.5 1.66 |7.154
Vi=| 0.96 —0.660|=0.887 = 8.06

|- 0.66 1.16 -0.5|

|0 - 0.5 1.66 ]
Similarly,

[ 096 1 0 ]

~0.66 5-0.5

I I

| 0 0 166 |
9.06

V=] 096 -0.660]| =0.887=10.2

|- 0.66 1.16 - 0.5]

|0 - 05 1.66]
[ 096 - 1
| 0.66 |
-0.66 1.16 2
| I
| o 9 o] 273

| - 066 0]|=0.887 =3.07
Vi=10.96

! .6 NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar network can also be written by inspection

without going through the detailed steps. Consider a three node resistive network, including the reference node, as shown in fig 3.16

R, R3 Rs




| 1.16 |
|-0.66 _¢o5 -0.5|

0 1.66 |

In fig. 3.16 the points a and b are the actual nodes and c is the reference node.

Now consider the nodes a and b separately as shown in fig 3.17(a) and (b)

Ri1 Va R3 R3 Vb Rs

Vb Va

Figure 3.17 -
(b)

In fig 3.17 (a), according to Kirchhoff’s current law we have

[ +I+15=0

(Va-V1)/R1 +Va/Ro+ (Va-Vu)/R3=0 (3.39)
In fig 3.17 (b) , if we apply Kirchhoff’s current law

IstIs=15

(a)

C— Ficure 3.16




2 (Vp-Va)/R3 + Vu/Rat(Vp-V2)/Rs=0 (3.40)
Rearranging the above equations we get
(I/R1+1/R2+1/R3)Va-(1/R3)Vo=(1/R1) V1 (3.41)
(-1/R3)Vat (1/R3+1/R4+1/R5)Vu=V2/R5 (3.42)
In general, the above equation can be written as
GaaVa + Gap V=1 (3.43)
GbaVa + Geb Vo=l (3.44)

By comparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node
a, Gaa=(1/R1+ 1/R2+ 1/R3) is the sum of the conductances connected to node a. Similarly, Gu,=
(1/R3 + 1/R4 +1/Rs5) is the sum of the conductances connected to node b. Gav=(-1/R3) is the sum
of the mutual conductances connected to node a and node b. Here all the mutual conductances
have negative signs. Similarly, Gva= (-1/R3) is also a mutual conductance connected between
nodes b and a. 11 and I are the sum of the source currents at node a and node b, respectively.
The current which drives into the node has positive sign, while the current that drives away
from the node has negative sign.

Example 3.8 for the circuit shown in the figure 3.18 write the node equations by the
inspection method.

Fig 3.18

Solution:-

The general equations are




GaaVat+Gab Vo=I1 (3 45)
GpaVa + Gob V=D (3.46)

Consider equation 3.45

Gaa=(1+ 1/2 +1/3) mho. The self conductance at node a is the sum of the conductances
connected to node a.

Gob = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of conductances connected
to node b.

Gab=-(1/3) mho, the mutual conductances between nodes a and b is the sum of the conductances
connected between node a and b.

Similarly Gpa = -(1/3), the sum of the mutual conductances between nodes b and a.

1:=10/1 =10 A, the source current at node a,
L=(2/5 + 5/6) = 1.23 A, the source current at node b.

Therefore, the nodal equations are
1.83V4-0.33V,=10 (3.47)

-0.33V,+0.7V= 1.23 (3.48)
3.7 SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source, then it is slightly difficult to
apply nodal analysis. One way to overcome this difficulty is to apply the supernode technique.
In this method, the two adjacent nodes that are connected by a voltage source are reduced to a
single node and then the equations are formed by applying Kirchhoff’s current law as usual.
This is explained with the help of fig. 3.19

Vi V2 + V3
2 3
R> Vx
I @ Ri R3 R4 Rs
—_— Vy
4

FIG 3 19




It is clear from the fig.3.19, that node 4 is the reference node. Applying Kirchhoff’s current law
at node 1, we get

I=(Vi/R1 ) + (Vi-V2)/R2

Due to the presence of voltage source V, in between nodes 2 and 3 , it is slightly difficult
to find out the current. The supernode technique can be conveniently applied in this case.

Accordingly, we can write the combined equation for nodes 2 and 3 as under.
(V2-V1)/R2 + V2/R3 + (V3-Vy)/R4 +V3/R5= 0

The other equation is
V2-V3 =Vx

From the above three equations, we can find the three unknown voltages.

Example 3.9 Determine the current in the 5 € resistor for the circuit shown in fig.

3.20
2Q
Vi V2 + Ys
NNV T
1Q 5Q 2Q
Poax
10V fig. 3.20
Solution. At node |
10=V1/3 + (V1-V2)/2
Or Vi[1/3 +1/2]-(V2/2)-10=0
0.83V1-0.5V2-10=0 (3.49)

At node 2 and 3, the supernode equation is




(V2-V1)/12 + V2/1 +(V3-10)/5+V3/2=0

Or —Vi/2+Vo[(1/2)+1]+ V3[1/5 + 1/2]=2

Or -0.5Vi+1.5V2+0.7V3-2=0 (2.50)
The voltage between nodes 2 and 3 is given by

V2-V3=20 (3.51)
The current in 5Q resistor Is=(V3-10)/5

Solving equation 3.49, 3.50 and 3.51, we obtain
V3=-8.42V

. Currents 15=(-8.42-10)/5 = -3.68 A (current towards node 3 ) i.e the current flows
towards node 3.

3.8 SOURCE TRANSFORMATION TECHNIQUE

In solving networks to find solutions one may have to deal with energy sources. It has
already been discussed in chapter 1 that basically, energy sources are either voltage sources or
current sources. Sometimes it is necessary to convert a voltage source to a current source or
vice-versa. Any practical voltage source consists of an ideal voltage source in series with an
internal resistance. Similarly, a practical current source consists of an ideal current source in
parallel with an internal resistance as shown in figure3.21. Ry and R; represent the internal
resistances of the voltage source Vs, and current source Is respectively.

b fig.3.21 b




Any source, be it a current source or a voltage source, drives current through its load
resistance, and the magnitude of the current depends on the value of the load resistance. Fig
3.22 represents a practical voltage source and a practical current source connected to the same
load resistance Ry.

Is RL

(a) (b)
Figure 3.22
From fig 3.22 (a) the load voltage can be calculated by using Kirchhoff’s voltage law as
Vab=Vs-ILRv
The open circuit voltage Vo=V

Vs
The short circuit current Ise= R

from fig 3.22 (b)

I =L-I=Is-(Van/R1)
The open circuit voltage Vo= [sR1
The short circuit current Isc=Is

The above two sources are said to be equal, if they produce equal amounts of current and
voltage when they are connected to identical load resistances. Therefore, by equating the open
circuit votages and short circuit currents of the above two sources we obtain

Voc=IsR1=Vs




Isc:Is:Vs/ Rv
It follows that
RlZRv:Rs; V=LRs

where R; is the internal resistance of the voltage or current source. Therefore, any
practical voltage source, having an ideal voltage Vs and internal series resistance Rs can be
replaced by a current source [s=Vy/R; in parallel with an internal resistance Rs. The reverse
tansformation is also possible. Thus, a practical current source in parallel with an internal
resistance Rs can be replaced by a voltage source V~=I;R; in series with an internal resistance
Rs.

Example 3.10 Determine the equivalent voltage source for the current source shown in fig 3.23

A

5A 5Q

Figure 3.23

Solution: The voltage across terminals A and B is equal to 25 V. since the internal resistance
for the current source is 5 €2, the internal resistance of the voltage source is also 5 Q. The
equivalent voltage source is shown in fig. 3.24.

5Q

Fig 3.24

Example 3.11 Determine the equivalent current source for the voltage source shown in fig. 3.25




30 Q

50V

D

Solution : the short circuit current at terminals A and B is equal to

I=50/30=1.66 A

1.66 @ A

30Q2

Fig 3.26

Since the internal resistance for the voltage source is 30€2, the internal resistance of the
current source is also 30 . The equivalent current source is shown in fig. 3.26.




NETWORK THEOREMS

Before start the theorem we should know the basic terms of the network.
Circuit: It is the combination of electrical elements through which current
passes is called circuit.

Network: It is the combination of circuits and elements is called network.
Unilateral :1It is the circuit whose parameter and characteristics change with
change in the direction of the supply application.

Bilateral: It is the circuit whose parameter and characteristics do not change with
the supply in either side of the network.

Node: It is the inter connection point of two or more than two elements is called
node.

Branch: It is the interconnection point of three or more than three elements is
called branch.

Loop: It is a complete closed path in a circuit and no element or node is taken
more than once.

Super-Position Theorem :

Statement :" It states that in a network of linear resistances containing more than
one source the current which flows at any point is the sum of all the currents which
would flow at that point if each source were considered separately and all other
sources replaced for time being leaving its internal resistances if any".

R, R

AW AMW—

— —_—

Explanation :

Considering E; source

Step 1.




R,&r are in series and parallel with R3 and again series with R
(Rotr2) || R3

(R*+ )R
= =m(say)

R+nrn+Rs

Rti=m+ R +n

E

]1 =

Rt
IIxRs3

I _

, =
Re+nrn+Rs
L(R2+ 1)

I _

3 =
Re+nrn+Rs

Step —2

Considering E2 source,R;&r; are series and Rj3 parallel and R, in series

(Ry+r1) || R3
(R'+ r)R?3
= =n (say)

R+n+Rs

Rtr=n+ Ry +nr;

E»>
L =

Rt
/ Di(Ri+ 1)

13 =Ri+nrn+R:3

; DXRs3

11 =Ri+nrn+
R




Current in R; branch =1, - 1/

Current in R, branch =5 - I/

Current in R3 branch = I, - Iy

The direction of the branch current will be in the direction of the greater value
current.

Thevenin’s Theorem :

The current flowing through the load resistance R; connected across any two
terminals A and B of a linear active bilateral network is given by

I/th V oc

Rin+ RLRi+ R

Where Vi, = V. is the open. circuit voltage across A and B terminal when Ry is
removed.

Ri =Ry, is the internal resistances of the network as viewed back into the open
circuit network from terminals A & B with all sources replaced by their internal
resistances if any.

Explanation :

B

Step — 1 for finding Voc

Remove Ri temnorarilv to find V..

R;
E-— [
i R li.c
o E
B Rl +R2 +7
Voc = IR

Step — 2 finding R

Remove all the sources leaving their internal resistances if any and viewed from
open circuit side to find out R; or Ry,.
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YYvy
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R = (R1+ l") ||R2

(R +1)R >
R

i=

Ri+r+ R,
Step — 3

Connect internal resistances and Thevenin’s voltage in series with load resistance
Ry.
Where Ry=thevenin resistance

Vu=thevenin voltage

Iin=thevenin current

Ri=(Ri+ 1) R
I/th V
I _ _
L= = oc
Run+ RiRi+ Re

Example 01- Applying thevenin theorem find the following from given figure
(1)  the Current in the load resistance Ry, of 15 Q)

30 A
AAAA
Teyy -
S120Q >
- 3 150
6UV
r= 10
B

Solution : (1) Finding Voc

— Remove 15Q) resistance and find the Voltage across A and B




e A

Yy

AAAA
wyy

24v
r=1Q ]

V.. is the voltage across 12Q resister
VOC — 24>< 12 =18V
12+3+1
(i)  Finding Ry,
Ru, 1s calculated from the terminal A & B into the network.

The 1Q) resister and 3 Q) in are series and then 30

parallel

AAA
vy
et
5
AAAA
VY
—
B
b

Rin= 3+1//12

yyy

AAAA

_4x12_ 34

16
Voc18 ) e

(111) lp=-= = =1 A. L B

R+ R 15+3

Example 02: Determine the current in 1Q resistor across AB of the network
shown in fig(a) using thevenin theorem.

Solution: The circuirt can be redrawn as in fig (b).




~,
21'24 E
_§~ |

__1.-1.“- :T
L—de fig (a),(b),(c),(d) respectively

Step-1 remove the 1€ resistor and keeping open circuit . The current source is
converted to the equivalent voltage source as shown in fig (c) Step-02 for finding
the Vi, we'll apply KVL law 1n fig (c) then 3-(3+2)x-1=0 x=0.4A

Vin=Vap=3-3%0.4=1.8V

Step03-for finding the Ry,all sources are set be zero
Ri=2//3=(2*3)/(2+3)=1.2Q

Step04- Then current [;,=1.8/(12.1+1)=0.82A

Example03: The four arms of a wheatstone bridge have the following resistances

AB=100Q,BC=10Q,CD=4Q,DA=50Q.AA galvanometer of
20€ resistance is connected across BD. Use thevenin theorem to compute
the current through the galvanometer when the potential differencelOV is
maintained across AC.

Solution:




L
=
- A 1
AN gl N M
N f'-; i 7\ W ‘«l’l %
A M x \
- o Sl Rt lR-J_L‘L| I," [ p— ——b
A AR
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step 01- Galvanometer is removed.

step02-finding the Vg between B&D.ABC is a potential divider on which a
voltage drop of 10vtakes place.

Potential of B w.r.t C=10*10/110=0.909V
Potential of D w.r.t C=10%4/54=.741V then,

p.d between B&D is V,=0.909-.741=0.168V Step03-
finding Ry, remove all sources to zero keeping their internal
resistances.

R =Rpp=10//100+50//4=12.79Q2  Step04;
lastly Iin=Vuw/RautR1=0.168/(12.79+20)=5mA

Norton's Theorem

Statement : In any two terminal active network containing voltage sources and
resistances when viewed from its output terminals in equivalent to a constant
current source and a parallel resistance. The constant current source is equal to the
current which would flow in a short circuit placed across the terminals and parallel
resistance is the resistance of the network when viewed from the open circuit side
after replacing their internal resistances and removing all the sources.

OR
In any two terminal active network the current flowing through the load resistance
Ry is given by

[sc xRi
A

L:




RixR1

Where R; is the internal resistance of the network as viewed from the open ckt side
A & B with all sources being replaced by leaving their internal resistances if any.

I 1s the short ckt current between the two terminals of the load resistance when
it is shorted Explanation :
R

AAAA A
yyyy
E e >
r T §E R.‘ R
B
Step — 1
A &B are shorted by a thick copper wire to find out Iy
Le=FE/(Ri+r)
AW A
R W lse
T R;‘E
B
Step — 2

Remove all the source leaving its internal resistance if any and viewed from open

circuit side A and B into the network to find R;.
A

*B

Ri= (Ri+7)|| R
Ri=(Ri+ rR/(Ri+ 7+ Ry

@  Er Ee

Step — 3




Connect I & R; in parallel with Ry

Ise xR
1

L= i

R+ R;

Example 01:Using norton's theorem find the current that would flow through the
resistor R, whenit takes the values of 12€2,24Q&36£2 respectively in the fig shown
below.

Solution:

_ £ == 3 | A
| : R -
| =]

| 1

i

Step 01-remove the load resistance by making short circuit. now terminal AB short
circuited.

Step 02-Finding the short circuit current I

First the current due to E; is =120/40=3A,and due to E, 1s 180/60=3A.
then [,.=3+3=6A

Step 03-finding resistance Ry

It is calculated by by open circuit the load resistance and viewed from open
circuit and into the network and all sources are taken zero.

Rn=40//60=(40%60)/(40+60)=24Q

i) when Ri=129Q, [;=6%24/(24+36)=4A ii)
when R =24Q,1;=6/2=3A

11i1) when R =36€,1;=6%*24/(24+36)=2.4A

Maximum PowerTransfer Theorem




Statement : A resistive load will abstract maximum power from a network when
the load resistance is equal to the resistance of the network as viewed from the
output terminals(Open circuit) with all sources removed leaving their internal
resistances if any Proof :

V A
[L: IL

Ri+ R:

Power delivered to the load resistance is given by
Pr= 1R Vin

( Vin )2
=|| Ri+ Re||) Re

Vit R L

2

(R,' +RL)

Power delivered to the load resistance Ry will be maximum
dP* When =0

dR

d | Vi*Re)
=1 2}=0dR.|(R+ R )

= Vio(Ri+ Ri)2 = VirRiax2(Ri+ Ru) =0

(Ri+ Ry)
= Vina(Ri + Re)2 = ViR x2(Ri+ R) =0
= Vm(Ri+ Rr)2 =2VmRr(Ri+ Ri) =0

=Vm(Ri+ Rr)2= 2VmRi (Ri + Rv)

=R+ R, = 2RL
= R=2R.—- R,
>R=R.;

[Vaz ]
(PL)max :l 2 |RL

|(Ri+R.)]




=(|| 4VR w2} | JR 1

2

Va
= 2 XRL
4R,
2
(P,)max =_‘h_V 3
4R,

MILLIMAN’S THEOREM :

According to Millimans Theorem number of sources can be converted into a
single source with a internal resistance connected in series to it,if the sources are
in parallel connection.

According to the Milliman’s theorem the equivalent voltage source

1

Ex+E,x +E3x +..
| ) 3

E= 1 1 1 R1 R2 R R
+ + +.....
RiR Rs > E
E, ‘B2 E;
EiGi+ E2Go+ E3Gs +.. T T T T
Gi+G+Gs+...
EEEs+ + +..
R R R
Gi+Gy+Gi+....
L+ L+ 5+,
G +Gy+Gs +...

Example — Calculate the current across 5Q resistor by using Milliman’s Thm.
Only

A
20 R R
R, EE & 0 :E R:
- >
Ri- 0

28 6v 2 v
St E_ T 12v

L L B




Solution :- Given ,
R1=2Q, R2:6Q . R3=4Q, RLZSQ E1:
6v, E,=12v
the resistance R, is not calculated because there is no voltage source
E E> Es

+ + .
RiR> R
E+0+E
=2 4
1 1 1
+—<+
2 6 4
34043 6
64213 _11x2 =6.54v
12
RI = L :—I—:Q =1.09.2 > wi
1 1 1 "~ 11 11 1.09Q 2
Rl +R2 +R3 12 - _ 3 :: RL
Voc 6.54 T
50
L= = =1.074Amp. Ve "'l“

1.09+5 1.09+5 COMPENSATION THEOREM :

Statement :

It’s states that in a circuit any resistance ‘R” in a branch of network in which a
current ‘I’ is flowing can be replaced. For the purposes of calculations by a voltage

source = - IR
OR

If the resistance of any branch of network is changed from R to R +4R where the
current flowing originaly is 1. The change current at any other place in the
network may be calculated by assuming that one e.m.f — I A R has been injected
into the modified branch. While all other sources have their e.m.f. suppressed and

‘R’ represented by their internal resistances only.

Exp — (01)

Calculate the values of new currents in the network illustrated , when the resistor

R3 18 increased by 30%.



Solution :- In the given circuit , the values of various branch currents are 1,
=75/(5+10) =54

— -

L=1,=2%20 25 4mp. <A 4
40 s Y ‘R
S0 ¥

Now the value of R3, when it increase el 262 30%

— m
b =
[

Ry = 20+(20x0.3) = 260

15V
IR =26 — 20 = 6Q T
V =—IAR i1 Ry .
Hl;l‘__ ‘ 13 =2Amp
W15 264 3
=-2.5%6 50 ff{: s R
3 T 260
=15V 1 Foa7
51120 = 2%20 100 40 T S
\
15 ‘§+l 0 25 =L 153
I'= =—=0.54mp
4—!5_)76q 30
B'="2%2 0 14mp
0%5 20
I'=22% =04Amp
25

1,"=5-0.4 = 4.64Amp

L"= 0.1+ 2.5 = 2.64Amp L,"= 2.5-0.5
= 24mp RECIPROCITY
THEOREM :

Statement :

It states that in any bilateral network, if a source of e.m.f ‘E’ in any branch
produces a current ‘I’ any other branch. Then the same e.m.f ‘E’ acting in the
second branch would produce the same current ‘I’ in the 1* branch.

Step — 1 First ammeter B reads the current in this branch due to the 36v source,
the current is given by

412 =4%12=- 30
16

20 0
R=2+4+3=9Q MWW AWy
=24 =4Amp
- 36v 1Q
IB:&ZE: 3Amp EE 120
12+43+1 16 SR
Ip=current through 1Q resister 40 B

Step — (II) Then interchanging the sources
and measuring the current

GQ [12Q=9%12_72=70
6+12 18




20 3Q

R = 4 + 3+1 = 8Q ‘I’""l" ‘v‘v‘v‘v
s 1Q
A :: 120
40 B 36V

36 4.5%12
I==454Amp,l,= = 3AmpTransfer v 36
resistance = = =12Q.

8 6+2 [ 3
COUPLED CIRCUITS

It is defined as the interconnected loops of an electric network through the
magnetic circuit.

There are two types of induced emf.
(1) Statically Induced emf.

(2) Dynamically Induced emf. Faraday’s
Laws of Electro-Magnetic :

Introduction — First Law :—

Whenever the magnetic flux linked with a circuit changes, an emf is induced in it.
OR

Whenever a conductor cuts magnetic flux an emf is induced in it.
Second Law :—

It states that the magnitude of induced emf is equal to the rate of change of flux
linkages.
OR

The emf induced is directly proportional to the rate of change of flux and number
of turns Mathematically :

de
e
dt
e «x N
de
Or e =-N
dt
Where e = induced emf

N = No. of turns




¢ = flux

‘- ve’ sign is due to Lenz’s Law

Inductance :—
It is defined as the property of the substance which opposes any change in
Current & flux.

Unit :—»  Henry

Fleming’s Right Hand Rule: -

It states that “hold your right hand with fore-finger, middle finger and thumb at
right angles to each other. If the fore-finger represents the direction of field, thumb
represents the direction of motion of the conductor, then the middle finger

represents the direction of induced emf.” Lenz’s Law : —

It states that electromagnetically induced current always flows in such a direction
that the action of magnetic field set up by it tends to oppose the vary cause which
produces it.

OR

It states that the direction of the induced current (emf) is such that it opposes the

change of magnetic flux. (2) Dynamically Induced emf : —

B B
N AN NN AN AN NAVAVAV AN AV

.-\. Vi

o>
F 4

B

In this case the field is stationary and the conductors are rotating in an
uniform magnetic field at flux density ‘B” Wb/mt? and the conductor is lying
perpendicular to the magnetic field. Let °/” is the length of the conductor and it
moves a distance of ‘dx’ nt in time ‘dt’ second. The area swept by the conductor
=/ dx

Hence the flux cut = ldx. B
Bldx

Change 1n flux in time *dt” second =  dt




E = Bly
Where V = dx

dt

If the conductor is making an angle ‘O with the magnetic field, then

e = Blv sin©

(1) Statically Induced emf : —

Here the conductors are remain in stationary and flux linked with it changes by
increasing or decreasing.

It is divided into two types .

(1)  Self-induced emf.
(i)  Mutually-induced emf.

(i) Self-induced emf : — It is defined as the emf induced in a coil due to the

change of its own flux linked with the coil.
L

(00007

»
If current through the coil is changed then the flux linked with its own turn will
also change which will produce an emf is called self-induced emf.

Self-Inductance : —
It is defined as the property of the coil due to which it opposes any change
(increase or decrease) of current or flux through it.

Co-efficient of Self-Inductance (L) :— It is defined as the ratio of weber
turns per ampere of current in the coil.

OR
It is the ratio of flux linked per ampere of current in the coil
1st Method for ‘L’ : —

No
L =




Where L = Co-efficient of self-induction
N = Number of turns p=flux I=
Current

2nd Method for L : —
We know that
N

=-L=-N dt
dt dl

=-L =¢

dt
L= =—_¢
A
=€r
= L = dl
dt
Where L = Inductance
de
e.=—-N 1s known as self-induced emf.

dt
dl

When =1lamp/sec.

dt

e =1 volt
L =1 Henry

A coil is said to be




a self-inductance
of 1 Henry if 1 volt
1s induced 1n it.
When the current
through it changes
at the rate of 1
amp/ sec.

3rd Method for L. :—
MoMrANZ

L=
/
Where A = Area of x-section of the coil

N = Number of turns
L = Length of the coil

(i) Mutually Induced emf :—

It is defined as the emf induced in one coil due to change in current in other coil.
Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will be induced
in coil ‘B’ due to change of current in coil ‘A’ by changing the position of the

rheostat.
A B

It is defined as the emf induced in coil ‘B’ due to change of current in coil
‘A’ is the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A’.

Co-efficient of Mutual Inductance (M)

Mutual Inductance :—

Coefficient of mutual inductance between the two coils is defined as the weber-
turns in one coil due to one ampere current in the other. 1st Method for ‘M’ : —
N 1
M =

I

Nz = Number of turns M
= Mutual Inductance @; = flux
linkage I, = Current in
ampere

2nd Method for M :—




We know that

M =

il
= Ml = N>
=-Ml = N,
dl' de'
=>-M =-N, dt
drdl’

Where dt ey=-N, 1isknown as mutually induced emf.
en=—1volt
Then M = 1 Henry

A coil is said to be a mutual inductance of 1 Henry when 1 volt is induced
when the current of 1 amp/sec. is changed in its neighbouring coil.

3rd Method for M :—

MoMrAN1N2
M =
/

Co-efficient of Coupling :

Consider two magnetically coupled coils having N; and N, turns respectively.
Their individual co-efficient of self-inductances are

Ll = MoMrAN22

/
Lz = MOM rANZZ

)

I'he 1lux @; produced n coil "A” due to a current of I; ampere 1s




®1=Lili=MoM AN x [

M / N

MoMr AN
¢
/
Suppose a fraction of this flux i.e. K;; is linked with coil ‘B’
)L L <0 — (1)

Then M=  xN,=

I [/IMM, A

Similarly the flux ¢, produced in coil ‘B’ due to I, amp. Is

MiM;AN-I >
¢,
[
Suppose a fraction of this flux i.e. K, is linked with coil ‘A’
IO ). Vol) VN — )

ThenM= xN,=

Vj; [/MM, A

Multiplying equation (1) & (2)
2 KiKoNi?N 22
M=2 2
22 XN1l
IMoM . A4

2 2
of MoM AN |(| MoM, AN |

= K[|\ I lJ'Ll 'J

["Ki = K2=K]




Where ‘K’ is known as the co-efficient of coupling.

Co-efficient of coupling is defined as the ratio of mutual inductance between two
coils to the square root of their self- inductances.

Inductances In Series (Additive) : —

Fluxes are in the same durection

Let M = Co-efficient of mutual inductance
L; = Co-efficient of self-inductance of first coil.
L, = Co-efficient of self-inductance of second coil.

EMF induced in first coil due to self-inductance d7

en=— L
dt
Mutually induced emf in first coil d/
em = _M
dt
EMF induced in second coil due to self induction drf
en.=— 1o
dr
Mutually induced emf in second coil df
eMz = _M
dt

Total induced emf
e=eL1t+enteuw + em

If ‘L’ is the equivalent inductance, then

dl dl dl dl dl
-L =-L-M -L - Mdt dt
dt dt dt

d  dl




=>-] =-— (L1— Lz— ZM)
dt dt

l=L=L+L+2M

Inductances In Series (Substnactive) : —

(Fluxes are opposite in direction)

7

Let M = Co-efficient of mutual inductance

L, = Co-efficient of self-inductance of first coil
L, -= Co-efficient of self-inductance of second coil
Emf induced in first coil due to self induction, d/

en=—L,

dt
Mutually induced emf in first coil

em=—(|-Mdl\|= M dl

l dt) dt
Emf induced in second coil due to self-induction d/
€= _LZ

dt
Mutually induced emf in second coil

( dr)y dl
ewn=—|-M |=M

( dt )
dt

Total induced emf

e=eL +ent+ewm+eéem

dl  dl dl dl dl
Then-L =-L-L, +M +M




dididt didtdl  dI
=>-L=—L+L-2M) =L=L+L-2M dt dt !
2
1 2

Inductances In Parallel : —

L

.o

Let two inductances of L, & L, are connected in parallel

Let the co-efficent of mutual inductance between them is M.

I =i+
dl di diy
e — (1)
dt dt dt
di'  di?
e=Li+M dt
dt di?
di!
=L, +M dr
dt
di dir dix dii
=>L1+M =1+ M
dt dt dt dt
di' di?
= (Li-M) = (L
-M) dt dt
di' O Y ) I — (2)
= =
dt(L - M) dt
dl di’ di ?
=+
dt dt dt
(T2 AL J2 e 2
= iyt o




(Li— M) dt dt

L A | €)

= dt=||\ L1 - M+1|)dt

If ‘L’ is the equivalent inductance
di di di? e=L =L +
M dt dt dtdi di di?

L=L+M dt
dt dt

S di=1 % p )
4)dr Et- dt— dt)
di'
Substituting the value of

dt
di 1[I*-M |di>
= |Li + M| ---mmmmmmmm e (5)dtL|L-M]|at

Equating equation (3) & (5)
(Iltt—z=- M0 @ = Tzt LL - - MM |)+ M) di de 2

| Li-M)| Jar LI\

L-M 1[{| 2= M|+ M|

=sLi-+1=L |Li|L-M|)]

M\
L-M+Li-M 1 [Lilo= LiM + LiM - M
= ]
Li-M L| L-M|
Li+ Lo=-2M 1 [Lil2— M

Li-M L|L-M)]




=> L+ LL-2M=LL,-M
- L

2

L'2-M

When mutual field assist.
Lila—-M?
L=
L1 + Lz + 2M
When mutual field opposes.

CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS

= The Loop equation are from fig(a)
di  dia_
Vi=Lidt + M dt
dip di__
Vo= Ladt + M dt

= The loop equation are from fig(b)

di d__

Vi= (L= M)dth+ Mdt (i1 +i2)
di d__

Vo= (L= M)dt + M dt (i1 +i2)

Which, on simplification become
din diz

Vi= Lidt + M dt

db di




Vo= Lodt + M dt

So called conductively equivalent of the magnetic circuit. Here we may represent
ZA = L1-M .
ZB = (Lz—M) and ZC =M

In case M is + ve and both the currents then Z, =L-M , Zg =L,-M and Z¢c =M,
also , if is — ve and currents in the common branch opposite to each other
ZA = L1+M , ZB = L2+M and ZC =-M.
Similarly, if M is —ve but the two currents in the common branch are additive, then
also.

Za=Li+M,Zg=L,tM and Z¢c=- M.
Further Za , Zg and Z¢ may also be assumed to be the T equivalent of the circuit.

Exp. -01 :

Two coupled cols have self inductances L;=10x10-H and L,=20x10
3
H. The coefficient of coupling (K) being 0.75 in the air, find voltage in the second

coil and the flux of first coil provided the second coils has 500 turns and the circuit
current is given by i; = 2sin 314.1A. Solution :

Vi

M =0.75V10 x10™ %20 x10

M=KLL

= M =10.6x10"H

The voltage induced in second coil is di
di

va=Mdt=M dt

_3d
=10.6x10 dtr (2sin3147)

=10.6x107*x2x314 cos 314t
The magnetic CKt being linear,

N2 500% (K@)
M= =

i1 i1
M 10.6x1073
p=500x% K xi; = 500x0.75 X25in314t

=5.66 x107 sin 314t




@1=5.66x107° sins 314

Exp. 02
Find the total inductance of the three series connected coupled coils. Where
the self and mutual inductances are
L,=1H,L,=2H,L;=5H
M12= OSH, M23 = IH, M13 =1H
Solution:
La =L +Mp+Mijs
=1+20.5+1
=2.5H
Lz = Lo+ My + My,
=2+1+0.5
=3.5H
Lc = L3+ My + M
=5+1+1
=7H
Total inductances are
La = La+tLe+Le

=25+35+7 =
13H (Ans)

Example 03:

Two identical 750 turn coils A and B lie in parallel planes. A current
changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate
the mutual inductance of the arrangement .If the self inductance of each coil is
15mH, calculate the flux produced in coil A per ampere and the percentage of this
flux which links the turns of B.

Solution: We know that
Mdl,

dat

5_:1 1 -

M 75%107
k= = _0.5=50%




A.C FUNDAMENTAL

Direct Current Alternating Current
v v
PN N
'T > il Ly
t — }—

(1) | D.C. always flow in one direction| (1) | A.C. is one which reverse
and whose magnitude remains periodically in

constant.
direction and whose magnitude
undergoes a definite cycle changes
in definite intervals of time.

)
)

High cost of production. (2) | Low cost of production

It is not possible by D.C. Because (3) By using transformer A.C. voltage
D.C. is dangerous to the can be decreased or increased.

transformer. .
4) (4) A.C. can be transmitted to a long

Its transmission cost is too high. distance economically.

Definition of A.C. terms :-
Cycle : It is one complete set of +ve and —ve values of alternating quality spread
over 360° or 2[] radan.
Time Period : It is defined as the time required to complete one cycle.
Frequency : It is defined as the reciprocal of time period. i.e. f=1/T
Or
It is defined as the number of cycles completed per second.

Amplitude : It is defined as the maximum value of either +ve half cycle or —ve
half cycle.

Phase : It is defined as the angular displacement between two haves is zero.
OR




Two alternating quantity are in phase
when each pass through their zero value at

the same instant and also attain their VT & |
maximum value at the same instant in a
given cycle. it %

V="V, sin wt i= 1, sin wt

Phase Difference :- It is defined as the angular displacement between two
alternating quantities.

OR

If the angular displacement between two waves are not zero, then that is known
as phase difference. i.e. at a particular time they attain unequal distance.

v .
F ol

b o— N

OR
Two quantities are out of phase if they reach their maximum value or minimum
value at different times but always have an equal phase angle between them.
Here V=1V, sin wt
i= Iysin (wt-Q)
In this case current lags voltage by an angle ‘@’. Phasor
Diagram :
Generation of Alternating emf :-

Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt? is
placed in

x-axis in an uniform magnetic field of maximum flux density Bm web/n#’. The coil
is rotating in the magnetic field with a velocity of w radian / second. At time t =
0, the coil is in x-axis. After interval of time “dt” second the coil make rotating in

anti-clockwise direction and makes an angle ‘0’ with x-direction.

The perpendicular component of the magnetic field is ¢ = @n cos wt
According to Faraday’s Laws of electro-magnetic Induction
do
e=-N dt
d

==N (puncoswt)
dt

=—N(—Pnwcoswr)




= Nw@,, sin wt
= 2TY/N@,, sin wt(*ow = 211f)
= 21TfNB,, Asin wt
e = E,sin wt
Where E,=21/NB, A

f —frequency in Hz
Bn— Maximum flux density in Wb/mt?

Now when g or wt =90°
e =En
ie. En=2mnfNB,A

Root Mean Square (R.M.S) Value : —

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which when
flowing through a given circuit for a given time produces same heat as produced
by the alternating current when flowing through the same circuit for the same time.
Sinuscdial alternating current is
i=I,sinwt=1,sin 0
The mean of squares of the instantaneous values of current over one complete
cycle

:J i*.de
! (27 -0)

The square root of this value is




=d0

I
R

Vo)

|4

=

@
&

o~

1
_ ===
:IQ_E A
R
/—%
|
l\) L
7]
>

I 2 21t
= 41m'[ 0l(l_cos2e)de
Im2 9 —sin29 i
4rr[ 2 0
2 2 .
de =\/Im 2 _ St
d 2
Im2 2
“Van JE70)
_ [mz _Im
V2 T2
L =0.707 I
Inm‘x= \/5 - !

Average Value :—

The average value of an alternating current is expressed by that steady current
(d.c.) which transfers across any circuit the same charge as it transferred by that
alternating current during the sae time.

The equation of the alternating current is i =1I,, sin 0

T i.do
Iavzj(ﬂ_m

0

= jMdQ = ﬁisin 0.do
0

T Ty

:Q[—cosﬁ]ﬁ :i[— cos 7 —(cos0’

wT o

V&

= [1-o(-1)]
T

27

Iav ="
T
2xMaximum Current
L=

T

Hence, 7., = 0.6371,

T]’\P averaoge ‘791]19 Qver A {"ﬁmf\]PfP P‘I(‘]P 1.Q Zero
(=4 I 7




Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of
maximum value to r.m.s value.

MaximumValue 1 m\/_

Ka= = =2=1414
R.M.S.Value I,

2
Form factor : - It is defined as the ratio of r.m.s value to average value.

r.m.s.Value 0.7071" J
Kf= = =2=1.414
Average.Value 0.6371,,

Kf=111

Phasor or Vector Representation of Alternating Quantity : —
0

An alternating current or voltage, (quantity) in a vector quantity which has
magnitude as well as direction. Let the alternating value of current be represented
by the equation e = E,, Sin wt. The projection of E, on Y-axis at any instant gives
the instantaneous value of alternating current. Since the instantaneous values are
continuously changing, so they are represented by a rotating vector or phasor. A
phasor is a vector rotating at a constant angular velocity

At t,e1 = Ensin wty
At t,e: = E,psin wh

Addition of two alternating Current : —

Let ei= E, sin wt

E, =
e>= E,, sin(wt =)
The sum of two sine waves of the same _ ¢
frequency is another sine wave of same E>

frequency but of a different maximum value and Phase.

e= eﬂ/+e22 + 2eje;cosp
Phasor Algebra :—
A vector quantity can be expressed in terms of
(1)  Rectangular or Cartesian form

(i1)  Trigonometric form

(ii1) Exponential form




(iv) Polar form

Esin g

E=a+jb

= E(cosO+ jsinO)

. . Ecos g
Where a =E cos 0 is the active part b = E

sin O is the reactive part

0= tan‘1|(—b_ |] =Phase angle
Vo lalj

= -1(90°) /2

=—1(180°) j°

==j(270°) j*

=1 (360°)

(i) Rectangular for :-
E=azx;b
tanB=>b/a
(i) Trigonometric form :-
E = E(cosB+ jsinB)
(iii) Exponential form :-
E = Eet/®
(iv) Polar form :-
E=FE/te (E = a*+b*)
Addition or Subtration :-
Ei=a+jb
E»=ax+ jb,

E\+x E>,= (a1 + az) + (bl +b,

- brtha) ||
(= tan || a+ ax)

|
Multiplication : -

ExE,= (a1 + jar) £ (a1 + jb2)




= (a1az —b1by) + j(araz +b1by)
i b2 +bia2) ||
©= tan || a2 —b1b2)

\

E1 = E1491
E2= EzA@z

EixEx= EiExs 21 +@2
Division :-

E1 = E1461

Ezz EzA@z
Ei Ei.061 E:

= = 201-62
E E:0: E»

A.C. through Pure Resistance : —

Let the resistance of R ohm is connected across to A.C supply of applied voltage

ey
R ——
A“‘A‘A'l'.l‘_
J»i
g
. ¢ = Emsin Wt or v = Vpsin wt
e = E,Sin Wi —===-===mmmmmmmmmme- (D)
Let ‘I’ is the instantaneous current .
Here e = iR
=i=e/R
i = EpSin Wt / R--==-===--mmmemmmmeee - (2)

By comparing equation (1) and equation (2) we get alternating voltage and current
in a pure resistive circuit are in phase
Instantaneous power is given by
P=ei

= E, sin wt . I, sin wt e = Emsin wt

[ = Imsin wt

= Em L sin® wt T

By

= .2sin wt T =
2




~

V2 V2 cosawr is called fluctuating part of power.

pey o
The fluctuating part .cos2wt of frequency double that of voltage and current
2
waves.
pein
Hence power for the whole cycle is P = =V s Lms
V2 V2
|= P = VI watts

A.C through Pure Inductance : —

Let inductance of ‘L’ henry is connected across the A.C. supply

iE—)VL

[

41
‘—_‘
.
= VmSiIl wt
v
=V SINWE ======mmmmmmmm e (1)
According to Faraday’s laws of electromagnetic inductance the emf induced
across the inductance di
V=Ldt
o v = Vmsin wt
i=1I_sn(wt—xl2)
di 1s the rate of change of current

dt

) NS

— Rl L t >
V. sinwt = [




dt
di Vasinwt
= dt L

Vm
= di = sinwt.dt L
Integrating both sides,

Vm
[ai=" 1 sinwear

Ve coswt )i =

L\ w)
V" coswt i

wL
Vm
I =— coswt wL
| (
mi=-
sin|wt — |

wL | 2 )

e M)
=— sin|lwt — | [" X = 21/L = wL]

X, ( 2)
Maximum value of i is

Ve M)
I,= when sin|wr - [is unity.

x| 2)
Hence the equation of current becomes i = 1,,sin(wt —11/2)

So we find that if applied voltage is rep[resented by v =V, sinwt , then current
flowing in a purely inductive circuit is given by i = 1, sin(wt

N
-TU/2)

Here current lags voltage by an angle 11/2 Radian.

Xy

Dasxvar fantar — oo n —

LT U VYV UL TOVUCTUL N ed o

v




= cos 90°
=0
Power Consumed = VI cos ¢
=VIx0
=0
Hence, the power consumed by a purely Inductive circuit is zero.

A.C. Through Pure Capacitance : _,

C i=1, sn(wt—mi2)
A v = Vmsin wt
11
o —an—s ! >
v = Vpsin wit

Let a capacitance of ‘C” farad is connected across the A.C. supply of applied
voltage v =V, sin Wt =====m====mmmmmmmmem e (1)

Let °q’ = change on plates when p.d. between two plates of capacitor is ‘v’
q=cv
q = cVy sin wt
dg d
=c¢ (Vusinwr)dt dt

i=cV, sin wt =wcV,,
cos wt
Vm
= = coswt
1/ we
™1 1
= = coswt [~ X.= = 1s known as capacitive reactance
Xc we 21ifc
in ohm.]
= [, coswt

= [y sin(wt +TU/ 2)
Here current leads the supply voltage by an angle 11/2 radian.

Power factor =cos @




=c0s90° =0
Power Consumed = VI cos ¢
=VIx0 =0
The power consumed by a pure capacitive circuit is zero.

A.C. Through R-L Series Circuit : —

Vi=IXL
Vr=IR
L

. (00000 __

.vl"v‘r
< Vi e Vi >

N
e=FE_sn wt

The resistance of R-ohm and inductance of L-henry are connected in series across
(D

the A.C. supply of applied voltage e = E, sin wt
V=Vi+ ]VL

= VVR2 +VL24(-D :tan_l[ )E;L]
= V(IR)Z +(]XL)24(D =tan_l );L]
“INR  + X, Lo =tan‘1[ );L]




v=1ze@=tan | X (R

Where Z = Ré + X2 o

= R + jX; 1s known as impedance of R-L series Circuit.
14 E"sin wt
I = =

Z. Z@
I = I, sin(wt —@)

Here current lags the supply voltage by an angle .

Power Factor :— It is the cosine of the angle between the voltage and current.

OR
It is the ratio of active power to apparent power.

OR
It is the ratio of resistance to inpedence .
Power :—

=v.i
=V, sin wt.L,, sin(wt —@)

=Vl sin wt.sin(wt —@)

= iVmIm2sin wt.sin(wt —@)
2
|

=Vulu[cos@—cos2(wt —@)]

2

Obviously the power consists of two parts.

1
(1) a constant part V,./,,cos¢p which contributes to real power.

2

1
(1)  a pulsating component V.1, cos(2wr —¢) which has a frequency twice

2

that of the voltage and current. It does not contribute to actual power since its
average value over a complete cycle is zero.

Hence average power consumed




:leIm cosP
2
VoI

=2 Zcosy

V2 2

=VI cos®p
Where V & I represents the r.m.s value.
A.C. Through R-C Series Circuit : —
The resistance of ‘R’-ohm and capacitance of ‘C’ farad is connected across the

A.C. supply of applied voltage

€ = EjSiN Wi ====mmmmmmmmmmmmmmmm oo (1)
R €
¥
< \rR * \'TC ;
Lo d
-
V=Vz+ (—]Vc)
=R+ (-jlX¢)
=IR-jXc)
V=1I1Z

Where Z =R — jXc =VR® + X" is known as impedance of R-C series Circuit.
Z R - jX,

VR £ X

X
2z —-@ —tan” _a]

V=I1IZs-¢
|14
=>/= 7Z,:.-0Q




E™sin wt

Ze—@
Em
sin(wt +@)
2
= [ = [,sin(wt +Q)

Here current leads the supply voltage by an angle ‘¢’.
A.C. Through R-L-C Series Circuit : —

Let a resistance of ‘R’-ohm inductance of ‘L.” henry and a capacitance of ‘C’ farad

are connected across the A.C. supply in series of applied voltage

€ = E, SiN Wi ====mm=mmmmmmmmmm oo (1)

- — -

e=Vr+Vi+Vc
=Ve+jVi=jVe
=Vr+ j(Vi=Ve)
=L+ jUX.-IX¢)

=R +j(X1= X )]

= ]Rx/+ (X = Xc)2 2x@=tan-if| X2 - X c)|
L r )
=1Z.+@

Where Z=1 RZ\A (X, - Xc)? is known as the impedance of R-L-C Series

Circuit.
If X, > X ¢, then the angle is +ve.
If X, < X ¢, then the angle is -ve.

Impedance is defined as the phasor sum of resistance and net reactance e
=lZ:+@

e E™sin wt

=>[= [Z+¢p = = [y sin(wt @)




Zex@ Zex@
(1) Ifx.>Xc,then P.f will be lagging.
(2) Ifx.<Xc,then, P.fwill be leading.

(3) IfX.=Xc, then, the circuit will be resistive one. The p.f. becomes unity and
the resonance occurs.

REASONANCE

It is defined as the resonance in electrical circuit having passive or active
elements represents a particular state when the current and the voltage in the
circuit is maximum and minimum with respect to the magnitude of excitation at
a particular frequency and the impedances being either minimum or maximum at
unity power factor

Resonance are classified into two types.
(1)  Series Resonance

(2) Parallel Resonance

(1) Series Resonance :- Let a resistance of ‘R’ ohm, inductance of ‘L.’ henry
and capacitance of ‘C’ farad are connected in series across A.C. supply

——] 00000

e = E,sin wt
The impedance of the circuit

Z:R+j(XL—Xc)]

Z = RN+ (X, - Xo)
The condition of series resonance:

The resonance will occur when the reactive part of the line current is zero The
p.f. becomes unity.

The net reactance will be zero. The
current becomes maximum.

At resonance net reactance is zero
XL - Xc = O
=>X;=Xc¢

i -y

=>W0L=




=>WALC =1
ﬁW02=1
LC
1
== Jic
1
= 21/, LC =
1
= fo= 2 VLC

Resonant frequency (f,) = —

Impedance at Resonance
Z() =R
Current at Resonance

Vv
I, =

R
Power factor at resonance

R R

Resonance Curve :-

Unity p.f.(u.p.f)

Lagging
Pt

fo

At low frequency the X_ is greater and the circuit behaves leading and
at high frequency the X1 becomes high and the circuit behaves lagging

circuit.

[-Z,= R]

.fo

If the resistance will be low the curve will be stiff (peak).




« If the resistance will go oh increasing the current goes on decreasing and the
curve become flat. Band Width : —

At point ‘A’ the power loss is Iy'R.
The frequency is f, which is at resonance.

IR
At point ‘B’ the power loss is

The power loss is 50% of the power loss at
point A

In
o’.A, 3/ /
B r

Hence the frequencies
corresponding to point ‘B’ is known as half power frequencies f; & f>.

f1 = Lower half power frequency

R
Si=fo-
4mL
F, = Upper half power frequency
R
fr=fot
4L

Band width (B.W.) is defined as the difference between upper half power
frequency ad lower half power frequency.

R
BW.=f-fi=

Selectivity : —

Selectivity is defined as the ratio of Band width to resonant frequency

B.W. R R
Selectivity =____ = Selectivity =

fo 2nL  21mfL

'nr




Quality Factor (Q-factor) :—
It is defined as the ratio of 21t x Maximum energy stored to energy dissipated per

cycle
1
21X Zjloz Q-factor
IRT
_
nz( 21)
= 2

IRTTL.2P

=2

IRT
TL.2]2

IRT
21L.
" RT

] 2rifo L.
lity factor = =
Quality factor R M= 10 = fi]l)

Quality factor is defined as the reciprocal of power factor.

Q factor = =
COS

It is the reciprocal of selectivity.
Voltage across Inductor.

Q-factor Or Magnification factor =

Voltage across resistor

°x L

LR
X L

R

2l Wl
== R




wr
Q- factor==R

Voltage across Capacotor.
Q-factor factor =

Voltage across resistor

IQX 4

IR
X C

21t C 211/ CR

1
Q-factor =
CR
2 WL 1
Q = X
R WoCR
1
2
Q “RC
1
0= R

Graphical Method : -

(1) Resistance is independent of frequency It represents a straight line.

(2) Inductive Reactance X = 21fL

It is directly proportional to frequency. As the frequency increases , X increases

1
(3) Capacitive Reactance X¢ = =

2nfC




Xv

f —r
It is inversely proportional to frequency. As the frequency increases, Xc
decreases.

When frequency increases, X increases and Xc decreases from the higher value.
‘T""IFL'F'—'L 7 :E‘R"i'

X

fo

-Xc

" o0

~

-Xc
At a certain frequency. X1 = X¢ That particular

frequency is known as Resonant frequency. Variation of

circuit parameter in series resonance:

(2) Parallel Resonance :- Resonance will occur when the reactive part of the line
current is zero.




ILsqu

Ircos

\
I

-_-: W\

At resonance,
[c—Iisingp=0
Ic= I sing
= A :%sin(p
Xe R 4+ X,

V V X,

= = X

Xe \/R2+XL2 \/R2+XL2
1 X

Xe R +X,

= R*+ X2 = X1.Xc

=

2]
=>Z==X1Xc=WLx

WoC

>R+ Xe=L C




22 L
>R+ (2nfl)= C

= R+ A felo=L C

= 4 fo2lo=L - R2

C

=fo= T3tz 2=f{ L - R |
411 )2
V1 R

ﬁﬁ)= i)
2n LC L

fo = Resonant frequency in parallel circuit.

Current at Resonance = I; cos@
14 R

VR X, VR X,

= VR
=2 2

R +XL

VR
=

y4

VR V

L/C L/RC
v

Dynamic Impedence

L/ RC — Dynamic Impedance of the circuit. or, dynamic impedances is defined as
the impedance at resonance frequency in parallel circuit.

Parallel Circuit :—




The parallel resonance condition:
When the reactive part of the line current is zero.

The net reactance is zero.
The line current will be minimum.
The power factor will be unity
Impedance Zi = R+ jX.

Z=Ri- jX ¢

1 1
Admittance Y, = =

Zi Ri+jX ¢
(Ri+jX1)

(R + jX 1)(Ri = jX 1)

R+ X1
= 2 2
R+ X1
R X1
Y= 2—j 2 2
Ri+ XitRi+ X1t
1 1
Admittance Y,= =
LR+ X ¢

(R2+jXc)

(R21 —ch)(Rz + ]Xc)




R+ jX 1

= 2

2

Ro+ Xc2R 22X 2

Y, = +j
R+ Xc R+ X
=>Y=Y+Y,
R X R2
=Y = 1 2 —j 2 L X
2+ 2 2+ j2c2
Total Admittance Admittance (| 1)|=1+ 1
(z) z
Z,
R+ X: R+ X: R+ Xc R+ X
c
=Y= R + R2 -l X - Xc )
R+ Xi2 Ra> + X2 |lR12+XL R +Xc I
At Resonance, ’ lJ
X X
2L 2 - 2¢ 2 =0
Ri+ XL R+ Xc
X X
= 2L 2= 2c 2
Ri+X. R+Xc

=>X(R2+X2)=X(R2+X 2)

'nfc 2mfC C




L2 C C 1 L

(
= 21fL||R2 + 4112 1f2C )| |= 2m1fC (R12+ 41'[2sz2)

|

= 2TfLR»+ L2= R+ 2TfL>

L R 2
= - 1= “2WLR,? 2fC 21fC C S
1(L
= | - Ru)|=21/L(| L - Rx) |
anfC\C ) c J— =
L 2
B -R L-CR:

= 4erC=%1 2=L-CRus

_R2
C
drafa=1(| L-CR2 \ ||
=
LC|\L=CR:]>
= f= 4n2LC|L L-CRx|)
= f:

1 ( L-CR> )
= f=2m | |lL2C — LCiR2 ||J




fis called Resonant frequency.

If R =0
Then f:L L_f{el-
27 L(
_ 1 |L-CR’
27 (
:LJT_I{]J
24N C
_ L [L R
wmNI*C I
po 1 |L R’
T o2zVNLe 12
If R, and R, = 0, then
. 1 {&
J =2\ Ec

1 1 1

e T
2e N LC 27+ LC

Comparison of Series and Parallel Resonant Circuit : —

Item

Series ckt (R-L-C)

Parallel ckt (R- L and C)

& Impedance at Resonance

Minimum

Maximum

R Current at Resonance

V

Maximum= R

14
Minimum= (L /CR)

R Effective Impedance R L

CR
&R P.f. at Resonance Unity Unity
& Resonant Frequency 1 1 / 1 R’

2mLC -2 LCL
R It Magnifies Voltage Current
& Magnification factor WL WL
R R




Parallel circuit : _,
I1 Ri ml
y BEIE—

=)
U

v.f

Zl =R1 +]XL = VR12 +XL24(.pl
Zy =R - jXc =VR2 + X" 4 —qn

_r ¥
_ZIA(DI_ZI
%

Where =Y,

11 ¢z — =114 -

A

Here Y, — Admittance of the circuit

Admittance is defined as the reciprocal of impedence.

L=V =R+ jX:




V V
I, = = =1y, =1
2 224 _(021 22 pAO 22 222

1 :\)]12 +122 +211 1, cos(py +p2)

I =114 (] +124(l)2

'I_:_‘J.n tl,_

= |

o

S

:.4 0 Icosd+ I cosp, A

A v
< |

c

=1 '
A .'
|

o

The resultant current “I” is the vector sum of the branch currents I; & I, can be

found by using parallelogram low of vectors or resolving I, into their X — and Y-
components ( or active and reactive components respectively) and then by combining

these components.




Sum of active components of I; and I, =1, cos ¢+ I, cos ¢

Sum of the reactive components of I and I, = I, sin ¢ - I; sin ¢,

EXP—01:
A 60Hz voltage of 230 V effective value is impressed on an inductance of
0.265 H

(1)  Write the time equation for the voltage and the
resulting current. Let the zero axis of the voltage wave
beat t =0.

(i1)  Show the voltage and current on a phasor diagram. (iii)
Find the maximum energy stored in the inductance.

Solution :-
Vinax = 2/1;: Z‘QSOV

f=60Hz, W= 2nf=21tx60 = 377rad /s. x1= wl =
377 x 0.265 = 10092 .

(1)  The time equation for voltage is ¥(¢) = 230 9 sin3771.
T = Vo 31= 2302100, ¥ 2.3 3 P= o (lag).
-~ Currente quation is.
i(0) = 23% sin(3771 - 10/ 2)
or =2.32cos377t
(i) Iti
(iii) OF Enx =% LI s =%><0.26SX(2.3 22 4y

Example -02 :

The potential difference measured across a coil is 4.5 v, when it carries a direct
current of 9 A. The same coil when carries an alternating current of 9A at 25 Hz,
the potential difference is 24 v. Find the power and the power factor when it is
supplied by 50 v, 50 Hz supply. Solution :

Let R be the d.c. resistance and L be inductance of the coil.
R=V/I=4.5/9 =0.5Q




With a.c. current of 25Hz, z = V/1.

24~ 2,660
9

xi= Z‘/Z— R = 2.66/2— 0.5?

=2.62Q
X;= 2TIx25%L

x1=0.0167Q
At 50Hz
x1=2.62%x2 = 5.24Q0)

Z=0.5*+5.24°

=5.060Q
I =50/526=95AP=1* R=
9.5% x 0.5 = 45 watt.
Example — 03 :

A 50- pf capacitor is connected across a 230-v, 50 — Hz supply. Calculate (a)
The reactance offered by the capacitor.

(b) The maximum current and (¢) The r.m.s value of the
current drawn by the capacitor.

Solution :

11 1

(@)  x= == 6= 63.6Qwe 2m fe 21x50x50x 10

(c)  Since 230 v represents the r.m.s value
“Lms = 230/ x;= 230/63.6 = 3.624

©)  Io=Lax 2L 362x 23 5114
Example — 04 :

In a particular R — L series circuit a voltage of 10v at 50 Hz produces a current of
700 mA. What are the values of R and L in the circuit ? Solution :

(i) Zz=Rr+ (2rtkes0L)?

= }éz + 98696L*

V=1z \/—
\/—




10 = 700x1073 (R*+ 98696L2)
(R*+ 98696L%) =10/ 700x 1073 =100/ 7

R> +98696L2 =10000/49-=-----=---===-==- (D
(i1)) Inthe second case Z = R2+ (2n~/><75L)2

10 = 500><10‘3¢€2 + 222066L%) = 20

R?+ 222066L%) = 20

e oLy A ) — (ID)
Subtracting Ea.(I) from (ii), we get,

222066L* —=98696L% = 400 — (10000/ 49)

=123370L* =196

o 2= 196

|
196

= L = V123370 = 0.0398H = 40 mH.
Substituting this value of L in equation (ii) we get R?+ 222066L(0.398)* = 400

=R =69Q.

Example — 04 :

A 20Q) resistor is connected in series with an inductor, a capacitor and an ammeter
across a 25 —v, variable frequency supply. When the frequency is 400Hz, the
current is at its Max™ value of 0.5 A and the potential difference across the
capacitor is 150v. Calculate (a) The capacitance of the capacitor. (b) The
resistance and inductance of the inductor. Solution :

Since current is maximum, the circuit is in resonance.

x1=Ve/1=150/0.5 = 300Q (a) x,=1/21fe =
300 =1/21x400% ¢

= ¢ =1.325x1076f =1.325f".
(b)  x=x=150/0.5 = 300Q
21t x 400 x L =300
=L =0.49H

(c)  Atresonance,

Circuit resistance = 20+R




= V/Z=2510.5 =
R=30Q
Exp.-05

An R-L-C series circuits consists of a resistance of 1000Q), an inductance of
100MH an a capacitance of wu pf or 10PK (i1) The half power points. Solution

1 10°

fo =21"10-1 x10 -4 = 21t =159KHz

i)
-1
L\/Z :LX 10_11 =100
RV 1000 V10
iy ¢ R 51000

i)  fi=/fo-4nl=159x10 - 4rx10-1 =158.2KH:z

£ = fo - 48 =159x1073 + 411 9%0% 10 _, 21598k Hz,

Exp. -06
Calculate the impedance of the parallel —turned circuit as shown in fig. 14.52 ata
frequency of 500 KHz and for band width of operation equal to 20 KHz. The

resistance of the coil is 5Q.
Solution :

At resonance, circuit impedance is L/CR. We have been given the value of R but
that of L and C has to be found from the given the value of R but that of L and C
has to be found from the given data.

T 20x10 = —orl =39%uH
21'[] 21'[ x! BW =

Sy e R_z_;\/ 1 5
2t VLC L' " 2p V39x107°C  (39x107™°)°

Jo -

C = 2.6 x10?

Z = L/ICR=39%x10°/2.6 x10? x5
= 3 x10°Q

Example: A coil of resistance 20Q2 and inductance of 200uH is in parallel with a
variable capacitor. This combination is series with a resistor of 8000€2.The voltage




of the supply is 200V at a frequency of 10°Hz.Calculate i) the value of C to give
resonance ii) the Q of the coil

ii1) the current in each branch of the circuit at resonance Solution:

g7 o

X =2nfL=2n*10%%200%*10°=1256L
The coil is negligible resistance in comparison to reactance.
d

f =
[ 3

2myIT
105 = :
" 2my200+C 1000
NN 1046 5 1074
i) Q=" = 20 *10% 2002 =62.8

iii) dynamic impedance of the circuit Z=L/CR=200*10"%/(125*10-
12
*20)=80000€2 total

Z=80000+8000=88000€2
[=200/88000=2.27mA

p.d across tuned circuit=2.27*10"
3#80000=181.6V —% __ — 1445m4

. . y10%+1256°
current through inductive wVC branch=

current through capacitor branch=
=181.6*2n*10*%125*1071°=142.7mA

POLY-PHASE CIRCUIT

Three-phase circuits consists of three windings i.e. R.Y.B




O~ —

Es

Ey, =E,sinwt =F,, .0

Ey= Eysin(wt —120) = E,.—120

Es = E,sin(wt — 240) = E,z— 240 = E,,.2120

3 - @ Circuit are divided into two types
» Star Connection

¢ Delta Connection

Star Connection :—

"
~ - -~ Neutral

VN

X

B

If three similar ends connected at one point, then it is known as star connected system.




The common point is known as neutral point and the wire taken from the neutral
point is known as Neutral wire. Phase Voltage :— It is the potential difference

between phase and Neutral. Line Voltage : — It is It is the potential difference
between two phases.

Relation Between Phase Voltage and Line Voltage : —

Line Volatage V;Y =V - V;N

VL :\/VRN+VW\7 —2VRNVVNC0S6OO

p
1
:\/Vph+V2ph =2V Vi XE

R
V. =\/ngh

Since in a balanced B —phase circuit Vrn= Vyn = Ven=Vpn

Relation Between Line current and Phase Current :-

In case of star connection system the leads are connected in series with each phase
Hence the line current is equal to phase current
I = Ipn

Power in 3- Phase circuit:-

P =V I cos@ per phase ph ph




=3V I cospfor 3
phase ph ph
y
=3 %’§COS¢('.‘ V=3r
N A

P =3V,1.cosp

J

Summaries in star connection:
i) The line voltages arel 2zfﬁart from each other.
300

i1) Line voltages are ahead of their respective phase voltage.

ii1)  The angle between line currents and the corresponding line voltage is 30+
current in line and phase are same.

Delta Connection :-

R &= ?‘k

A

gg‘;{f—fﬂﬂ_i

¥ f—
If the dissimilar ends of the closed mesh then it is called a Delta

Connected system

Relation Between Line Current and Phase Current :-

Line Current in wire — 1 = R- Y
Line Current in wire -2 =iY- B

- -

) T

he




Line Current in wire —3 = 'B—'R

[L =1R—IY

:JIR2+IY2 —ZIRIY COS6OO

=\/ Ly 1, =201, xi
F =+3L,
Relation Between Line Voltage & Phase Voltage : —
V=V
Power = = 3/1_/LI Lcos@ Summaries
in delta:
1) Line 1207 currents are apart from each other.
i1)  Line 30° currents are behind the respective phase current.

ii1) The angle between the line currents and corresponding line voltages is 30+

Measurement of Power : —
(1) By single watt-meter method
(2) By Two-watt meter Method
(3) By Three-watt meter Method
Measurement of power By Two Watt Meter Method :-




Phasor Diagram :-

Let Vg, Vy, Vg are the r.m.s value of 3-¢ voltages and Ig,ly,Is are the r.m.s. values of
the currents respectively.
Current in R-phase which flows through the current coil of watt-meter
Wi=1Ir
And Wr=1Iy

Potential difference across the voltage coil of W, =V =Vz =V

- - -

And Wy=Vw=Vy=Vs
Assuming the load is inductive type watt-meter W, reads.

Wi =Vealr COS(30—(.|))

W1 =Vl c08(30 = (p)--==========mmmmmmmmmmm - (1)
Wattmeter W, reads

W> =Vyglycos(30+@)

W =Vl co8(30+)--===-======mmmmmmmm e e (2)

Wi+ W, =Vl cos(30-¢) +V I, cos(30+@)
=Vili[cos(30-p) + VI cos(30+)]
=Vl (2c0s30° cosp)
V3
=Vil (2% 2 cos®)
Wi+W,= 3/1;11Lcoscp ----------------------------- 3)

Wi =W, =ViI[cos(30-@) —cos(30+®)
=Vl (2sin30° sin@)

=Vl (2% L sing)
2

w=-w,=V.I, sin(p




W =W Vil sing

A
Wi+ W, 3Vl cos@
1

\/g = tan@

= tang= 3f|| W=y ||
| w1 + W)

= all

== tan

Variation in wattmeter reading with respect to p.f:

3|\ Wi+ w2

Pf W reading W, reading
=0,cos =1 +ve equal +ve equal
=60,cos =0.5 0 +ve
=90,cos =0 -ve, equal +ve equal
Exp.: 01

A balanced star — connected load of (8+56). Per phase is connected to a balanced
3-phase 100-v supply. Find the cone current power factor, power and total volt-
amperes. Solution :

Zn= 8+ 62=10Q
V= 400/ 3 =23M
L=Vl Z = 231/10 = 23.14 i)
I =Z=23.1A
ii)  P.f.=cosO=Ry/zn = 8/10 =0.8 (lag) iii)
PowerP = 3Vl cosO

=?/;400><23.1><0.8 = 12,
800 watt.

iv)  Total volt ampere s =V 3 VI,

= V3 x 400x 23.1
=16, 000 VA.




Exp. -02

Phase voltage and current of a star-connected inductive load is 150V and 25A.
Power factor of load as 0.707 (Lag). Assuming that the system is 3-wire and power
1s measured using two watt meters, find the readings of watt meters. Solution :

Von = 150V
VL =v3 x 150
In=1I.=25A

Total power = V3 VLI cos @ = V3 x 150x V3 x 25 x 0.707 = 7954
watt. W, + W, = 7954.00, cos @=0.707 @ = cos! (0.707) = 45°, tan 45°
=1
Now for a lagging power factor, tanp=
U A A

V(=)
~1= 379541

.'.(Wl —VVQ) = 4592W
From (i) and (ii) above, we get
W, =6273w W, = 1681w




TRANSIENTS

Whenever a network containing energy storage elements such as inductor or capacitor is
switched from one condition to another,either by change in applied source or change in
network elements,the response current and voltage change from one state to the other
state.The time taken to change from an initial steady state to the final steady state is known as
the transient period.This response is known as transient response or transients.The response
of the network after it attains a final steady value is independent of time and is called the
steady-state response.The complete response of the network is determined with the help of
a differential equation.

STEADY STATE AND TRANSIENT RESPONSE

In a network containing energy storage elements, with change in excitation, the currents and
voltages in the circuit change from one state to other state. The behaviour of the voltage or
current when it is changed from one state to another is called the transient state. The time
taken for the circuit to change from one steady state to another steady state is called the
transient time. The application of KVL and KCL to circuits containing energy storage elements
results in differential, rather than algebraic equations. when we consider a circuit containing
storage elements which are independent of the sources, the response depends upon the
nature of the circuit and is called natural response. Storage elements deliver their energy to
the resistances. Hence, the response changes, gets saturated after some time,and is referred
to as the transient response. When we consider a source acting on a circuit, the response
depends on the nature of the source or sources.This response is called forced response. In
other words,the complete response of a circuit consists of two parts; the forced response
and the transient response. When we consider a differential equation, the complete solution
consists of two parts: the complementary function and the particular solution. The
complementary function dies out after short interval, and is referred to as the transient
response or source free response. The particular solution is the steady state response, or the
forced response. The first step in finding the complete solution of a circuit is to form a
differential equation for the circuit. By obtaining the differential equation, several methods
can be used to find out the complete solution.

DC RESPONSE OF AN R-L CIRCUIT

Consider a circuit consisting of a resistance and inductance as shown in figure.The inductor in
the circuit is initially uncharged and is in series with the resistor.When the switch S is closed
,we can find the complete solution for the current.Application of kirchoff’s voltage law to the
circuit results in the following differential equation.




<
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Figure 1.1
VERIFLE 11
d R V
L N o S i 1= 1.2

In the above equation, the current | is the solution to be found and V is the applied constant
voltage. The voltage V is applied to the circuit only when the switch S is closed. The above equation is
a linear differential equation of first order.comparing it with a non-homogenious differential
equation

Y S 13
df

whose solution is

X = @"PF [ HE™¥ i +C €% crrevreserersssssessssssssssssssssssnnn 1.4

Where c is an arbitrary constant. In a similar way , we can write the current equation as

o -:E[«- _||‘— |: ! II‘—-II;
i=ce ‘& +e —e\L dt
. - :ﬂ'[r v
Hence,1 =Cé& i +R ......................................... 1.5

To determine the value of c in equation c, we use the initial conditions .In the circuit shown in
Fig.1.1, the switch s is closed at t=0.at t=0-,i.e. just before closing the switch s, the current in the
inductor is zero. Since the inductor does not allow sudden changes in currents, at t=o+ just after
the switch is closed,the current remains zero.

Thusatt=0,i=0
Substituting the above condition in equation c, we have
O=c+ 7

Substituting the value of ¢ in equation ¢, we get




o S0 Vo —
l1=— -— € E
K R
v 1 —Re
1= -2l
L -et)
i = - I,==)
i=l, (1- ¢ &) (where -
i=1, (1- €7 ) (where (O .67 = Tims constant 5
;
Y
R
Figure 1.2
=R

Equation d consists of two parts, the steady state part {f, =V/R) and the transient part el

When switch S is closed , the response reaches a steady state value after a time interval as shown
in figure 1.2.

Here the transition period is defined as the time taken for the current to reach its final
or stedy state value from its initial value.In the transient part of the solution, the
quantity L/R is important in describing the curve since L/R is the time period required

for the current to reach its initial value of zero to the final value /s =V/R. The time
=Rz

constant of a function {= €% is the time at which the exponent of e is unity, where e is
the base of the natural logarithms.The term L/R is called the time constant and is
denoted by t.

L
So, T == sec

Hence, the transient part of the solution is

At one Time constant, the transient term reaches 36.8 percent of its initial value.

Iy | =



i(f=-Le7 = _ig-ﬂ =-0.368 -

i

Similarly,
i20) 7% = =- I 0435
i3 F¥% = =- 7 0.0498
i59) ¥ = =- 3 0.0067

After 5 TC the transient part reaches more than 99 percent of its final value.
In figure A we can find out the voltages and powers across each element by using the current.

Voltage across the resistor is

iy
R =Ri=Rx ' (1-¢L)
a

Hence, vz=V (1-)

Similarly, the voltage across the inductance is

ap Az
v =L—=L ot =Ngl

bl

ll.ll'-l.
re o

- NE
L L)

The responses are shown in Figure 1.3.

Figure 1.3




Power in the resistor is

= . = | S o3 SR

Fg=tgi=V(1-eT ){l— &L }I%-
n

=8

2 =Ar =R
=—(1-2¢: )+ ¢

&)

Power in the inductor is

: = . =
Pr=vpi=Ver x :

Ll

2 =8z =zRr

=—(0f -@ L
—(oT -6T)
The responses are shown in figure 1.4 .

S
R

Figure 1.4

Problem: 1.1

)(\S

B0V = i a‘

w
o
3=

Figure 1.5

A series R-L circuit with R =30Q and L = 15 H has a constant voltage V = 50 V applied at t=0 as

shown in Fig. 1.5 . determine the current i, the voltage across resistor and across inductor.
Solution :

By applying Kirchoff’s voltage Law, we get




153 +30i =60

+2i=4

I
W/
BB

The general solution for a linear differential equation is
i=ce™Pt 4 g=% [ Fetdt

where P=2,K=4

putting the values

i=ce™ 2t + g~ [ 4gtdt

=>i=ce % + 2
At t=0, the switch s is closed.

Since the inductor never allows sudden change in currents. At t=07 the current in the circuit is zero.
Therefore at t=07,1=0

== 0=c+2
55 § c=-2

Substituting the value of c in the current equation, we have

i=2(1- ") A
voltage across Vz)=iR=2(1- 77 ) x30=60(1- ") v resistor (
voltage across V)= L% =15 X iZ(l- e 7)) = 30x 287 v=60e"" inductor (

DC RESPONSE OF AN R-C CIRCUIT

Consider a circuit consisting of a resistance and capacitance as shown in figure.The capacitor in the
circuit is initially uncharged and is in series with the resistor.When the switch S'is closed at t=0, we
can find the complete solution for the current.Application of kirchoff’s voltage law to the circuit results
in the following differential equation.
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Figure 1.6

VR L T 1.7
i+=[idt

By differentiating the above equation, we get

[]
L0

O=R ¢z

0y | e

ettt 1.8

Or

Gl 1

—+ .

it T RCTZ0 e 1.9

Equation c is a linear differential equation with only the complementary function. The particular solution
for the above equation is zero. The solution for this type of differential equation is

12 C™hRE s 1.10

To determine the value of ¢ in equation c, we use the initial conditions .In the circuit shown in Fig.
the switch s is closed at t=0. Since the capacitor does not allow sudden changes in voltage, it will
act as a short circuit at t=o+ just after the switch is closed.

So the current in the circuit at t = 0+ is =

Thus att = 0, the currenti=x
Substituting the above condition in equation c, we have

Substituting the value of ¢ in equation c, we get




; Vv _|"IL.'|
1= A T 1.11

oy

<

© 1 2 3 475 8 7c

Figure 1.7

When switch S is closed , the response decays as shown in figurre.
The term RC is called the time constant and is denoted by t.

So, t=RCsec
After 5 TC the curve reaches 99 percent of its final value.

In figure A we can find out the voltage across each element by using the current equation.

Voltage across the resistor is
i =Ri=Rx'

¥ =
a

gREC

o

Vr =V &x

Hence,

Similarly, voltage across the capacitor is

At t=0,voltage across capacitor is zero
So,c=V

And

V:=V{l - &%%)




The responses are shown in Figure1.8.

Vi-r——-=

i

2 3 4 5 5 1C

Figure 1.8

Power in the resistor is

Fa=tgzi= Ve&ft x Y &Re
o

:I.s'
B

=
|

1
=8

Power in the capacitor is

-

. eRE) _ @At
.Fg_— =:'r_-1= V(l' &
el L -0

== (Fe70)

Lp]

The responses are shown in figure 1.9.

2l

Figure 1.9
Problem: 1.2

A series R-C circuit with R=10Q and C =0.1 F has a constant voltage V = 20 V applied at t=0 as shown
in Fig. determine the current i, the voltage across resistor and across capacitor.
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Figure 1.10

Solution :
By applying Kirchoff’s voltage Law, we get

10i + — [1d#=20
01°

Differentiating w.r.t. t we get

=== 4i=0

The solution for above equation is

i=ce™"
At t=0, the switch s is closed.

Since the capacitor never allows sudden change in voltages. At t=07the current in the circuit is i
=V/R=20/10=2A

. Thereforeatt=0,i=2 A

== the current equation is e i=2 voltage
across resistor (V;) =iR =2 e X
10=20e""v

voltage across capacitor (V) = V{1l = ef‘:‘_r;“}= 201-=7T) V

DC RESPONSE OF AN R-L-C CIRCUIT




Consider a circuit consisting of a resistance, inductance and capacitance as shown in figure.The
capacitor and inductor in the circuit is initially uncharged and are in series with the resistor.When the
switch Sis closed at t=0, we can find the complete solution for the current.Application of kirchoff’s
voltage law to the circuit results in the following differential equation.

S QR A

L
-~
ey

Figure 1.11

v=Ri+L§+§J‘:d:‘ ....................................................................... 1.12

By differentiating the above equation, we get

di ST e A i
— i Ldstfde=+ _
0=Rét f ol T 1.13
Or
TR - LN U
difdee +7:+;|=0 ............................................................ 1.14

The above equation cis a second order linear differential equation with only the complementary
function. The particular solution for the above equation is zero. The characteristics equation for this type
of differential equation is

b: .,

LiwL
+

-

rwl“
1
o
i
[E=Y
5

The roots of equation 1.15 are

N . 1
By assuming K =- s and K-= " {_': J:[ =

ﬂ1 =K1“ K. and D: =K1— K-

Here &- may be positive,negative or zero .

T : - A% 1
Case | : K3 i Pusitive fii D

ZES LC

Then, the roots are Real and Unequal and give an over damped Response as shown in figure




1.12.

The solution for the above equation is: i= C; @¥efiain ¢ ( glf¥ah

A

s

Figure 1.12

e [

K. ts Negative (&) <
Casell: - ¢ {.:.a;

Then, the roots are Complex Conjugate, and give an under-damped Response as shown in figure
1.13.

ey

Figure 1.13

The solution for the above equation is: i= ¢*#{C; cosK;t +C; sin Kyt)

|::;

| =

I3
&

Caselll: K, (s Zere |

(5]
r‘ul"'

"

=

Then, the roots are Equal and give an Critically-damped Response as shown in figure 1.14.

Figure 1.14

The solution for the above equation is: i = g¥&{c, + C,t)




Problem: 1.3

A series R-L-C circuit with R =200, L = 0.05H and C = 20 pF has a constant voltage V = 100 V applied
at t=0 as shown in Fig. determine the transient currenti.

; L 3005H
100 V 3

B |

C 20 uF
5

Figure 1.15

Solution :
By applying Kirchoff’s voltage Law, we get

[fide

I 5 !
100=30i ' 0'05-:.-+ 20x 10-¥

Differentiating w.r.t. t we get

0.05e %4/dt +20 — + oo (20
== g2i/de? +400 2 + 1951 =0
== {D*+400D+10% =0

The roots of equation are

_
(= e

IyDy - g
= -zooi\'{moi-' —10°

Iy = -200+j979.8

B2= .200-j979.8

Therefore the current
e R [y cosKa 4+ CooozKat]

e~ cog979.8¢ + Cr 8in 979.8¢]




At t=0, the switch s is closed.

Since the inductor never allows sudden change in currents. At t=07 the current in the circuit is
zero. Therefore at t=07,i=0

i=0=(1) [T coz @+ C; 2in 0] ==
=0andi=g 28, sin 9798t ] A=>
Differentiating w.r.t. t we get

14
% = C, [¢-29%°979,8 cog979.8 ¢ + 82905 —200)sin 979.8¢ ]

At t=0, the voltage across the inductor is 100 V

-y 7 EE dt
=» L= ==2000
Att=0,5 C,979.8 cos0

=100 or
——Jo —E
— 7 "I grmg
=2000=

=2.04

The current equation is
i=g=200¢(2.04aln 979.80) 4

ANALYSIS OF CIRCUITS USING LAPLACE TRANSFORM
TECHNIQUE

The Laplace transform is a powerful Analytical Technique that is widely used to study the
behavior of Linear,Lumped parameter circuits. Laplace Transform converts a time domain
function f(t) to a frequency domain function F(s) and also Inverse Laplace transformation
converts the frequency domain function F(s) back to a time domain function f(t).




L{f(t)} = [ gmst O T (03 1 T,
R (0 I S 7 (3 E N O LT 2

DC RESPONSE OF AN R-L CIRCUIT (LT Method)

Let us determine the solution i of the first order differential equation given by equation A which is
for the DC response of a R-L Circuit under the zero initial condition i.e. current is zero, i=0 at t=
07 and hence i=0 at t=@7 in the circuit in figure A by the property of Inductance not allowing the
current to change as switch is closed at t=0.

g R
A Vv

Y | D af.

Figure LT 1.1

V=Ri+LE s LT1.1

Taking the Laplace Transform of bothe sides we get,

S=RI(S)+ LLSI(8) ~1(0) ] oo LT 1.2
=22 _RI(s)+L[sI(s)] (1(0) =0 : zero initial current)

> =1(s)[R +Ls]

P2 R LT13

— _‘::][S) =




Taking the Laplace Inverse Transform of both sides we get,

=> Y[} = ) = 1 ]

T
-

i(t) = L~ m} ( Dividing the numerator and denominator by L )

putting % = /L we get

1

0= Mt =Y G- ) e

{ ol
=y

i(t) = ﬁ."'{; [%— .,5—__; = }%} ( again putting back the value of & )

o1 1 1 =-Ar =fr 1r
i) = =il (=— MN=—(1-8F )= A { == o)
i(t)==L {3 [_lp {s-sa'-'.*.;-*J} = (1- T )=I,(1- 8T ) (where |, s

i(=1,(1- e?] (where 7= Timeconstant= r e s LT 1.4

n

It can be observed that solution for i(t) as obtained by Laplace Transform technique is same as that
obtained by standard differential method .

DC RESPONSE OF AN R-C CIRCUIT(L.T.Method)

Similarly ,

Let us determine the solution i of the first order differential equation given by equation A which
is for the DC response of a R-C Circuit under the zero initial condition i.e. voltage across
capacitor is zero, 7 =0 att=0" and hence V. =0 at t=07 in the circuit in figure A by the property

of capacitance not allowing the voltage across it to change as switch is closed at t=0.

'y R
—o Y o,

|4
== —
i@
Figure LT 1.2
VERIAEJLED e LT 1.5
Taking the Laplace Transform of both sides we get,
i s
- SRISTFF +L(0) ] oo LT 1.6
N i X -
=% =RIE)# [ ] (1(0) =0 : zero initial charge)

o Beail

> :l(s)[Ri]:‘(j‘)[ c




v_G . ¥
==I(s)= - ¢ = T(RC) |

Taking the Laplace Inverse Transform of both sides we get,

=> E4{I(s)} = &) = L"*{;E;'f_,.,}

>

(o

i(t)= E."-{Tf%r} ( Dividing the numerator and denominator by RC )
o

1
i 0 =— -
putting = e get

—xt

n

i(y) = L_l{m_. — €

R
i(t)= : E'?EE[ putting back the value of
-l 1
i(t) =l 0l (where I, = =} ikl 1.8
&

i()=7,e7) (where v=Timeconstant= RC) %)

It can be observed that solution for i(t) as obtained by Laplace Transform technique in q is same
as that obtained by standard differential method in d.

DC RESPONSE OF AN R-L-C CIRCUIT ( L.T. Method)

Figure LT 1.3

Similarly ,

Let us determine the solution i of the first order differential equation given by equation A which
is for the DC response of a R-L-C Circuit under the zero initial condition i.e. the switch s is closed
at t=0.at t=0-,i.e. just before closing the switch s, the current in the inductor is zero. Since the
inductor does not allow sudden changes in currents, at t=o+ just after the switch is closed,the
current remains zero. also the voltage across capacitor is zero i.e. . =0 att=G¢ and hence V. =0
at t=07 in the circuit in figure by the property of capacitance not allowing the voltage across it
t0 suddenly change as switch is closed at t=0.

. E+é;l':-' g1
V=Ri+ LA §7 e e LT 1.9




Takmg the Laplace Transform of both sides we get,
< =RI(s) ++ L [s1(s) -1(0) ]+ [ 521007 .

=}§=R|[s)+L-[sxas>1+§[%] (10) =
charge )

=== (S][R +L5+_] i I[ )[-CA‘ "3&‘*1]

CF ] Ve
lac:=—m..=—1 e T

=x=[(s) =

Taking the Laplace Inverse Transform of both sides we get,

=> L"I(s)} = &) = L"%m

}

< & " 1
O = o il = f—
putting 5 fnd m Jic we get

-|r‘-

!(tJ b f--t{ L [sEalm "u-‘]}

..LT 1.10

U:zero initial current & 1(0) =0: zero initial

..LT 1.11

( Dividing the numerator and

denominator by LC)

The denominator polynomial becomes = [#2 -2 %5 |- w=]

N AP
-2l -
Where, Sy .83 _—,# =

-V XT-wt =~ B

& [
where, = =—; “’:.\.E and = TR

By partial Fraction expansion, of I(s),
I

I(s) = +=— -

5=5. B=F§

A 8-58) lls=s,

¥ .
E =i K
(B8} §.~Fy
B=
% ( 2 &
(By=5p) (a=sy) =~—5;.‘J




I(s) =

Taking the Inverse Laplace Transform
i(t) = Ay oFF  Rped

Where “and ardxonstants to be determined and and &ren the roots of the equation
Now depending upon the values of 51 and<- , we have three cases of the response.
CASE I : When the roots are Real and Unequal, it gives an over-damped response.

& = ;In this case, the solution is given by

i . [
_— — or
i A EC
i(t) =™ (& 7% A28 FE) s e LT 142
fort = 0

or i(t) =4 et 407
CASE II : When the roots are Real and Equal, it gives an Critically-damped response.

B i1
U T Wi or = — .. ;Inthis case, the solution is given by

or
LT 1.13

(D)= (Aj+&1 ) fort=0 e
: When the roots are Complex Conjugate, it gives an under-damped response.

CASE 111
i < \‘5 or o= .. ;In this case, the solution is given by
i(t) =4y 8%+ Agg™F fort= 0
where, 5, ,5; = m = —m VAT — 0t
=1 and we =vo" —x*

Let vor—o? = =1 4 = =j wg where j=

Hence, i(t) =g=%2(4, /¥ + A, g=/waF)

[[Rslimciniia

M o (elegf sp=fugt ”  [(alwdl — a= gl
i(y=2"" [’«41 + &) %;}4' ay —Ag) {%}
i) =" [{4 +Ag)cosmgt +1 (4 —Ag)sinoxgt ]

i(t) =8~ (B coswgat + Bz #in wgt)
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TWO PORT NETWORKS

Generally, any network may be represented schematically by a rectangular box. A network may be
used for representing either Source or Load, or for a variety of purposes. A pair of terminals at which
a signal may enter or leave a network is called a port. A port is defined as any pair of terminals into

network having only one pair of terminals (1-1’)is shown figure 1.1.

Network
1 ,
1y I,
to—> 1.0 bo—Li-z
Input y 5 Output
port "1 2 port
¥ _i'_—_.a}. b.r.__'_'_lz_,

which energy is withdrawn ,or where the network variables may be measured .One such
Figure 1.1

A two-port network is simply a network a network inside a black box, and the network has only two
pairs of accessible terminals; usually one one pairs represents the input and the other represents the
output. Such a building block is very common in electronic systems, communication system,
transmission and distribution system. fig 1.1 shows a two-port network,or two terminal pair network,in
which the four terminals have been paired into ports 1-1’ and 2-2’.The terminals 1-1’ together
constitute a port. Similarly, the terminals 2-2’ constitute another port. Two ports containing no sources
in their branches are called passive ports ; among them are power transmission lines and transformers.
Two ports containing source in their branches are called active ports. A voltage and current assigned to
each of the two ports. The voltage and current at the input terminals are "1 and

L; where as V2 and~ are entering into the network afe V=, 11 Iz and . Two of
these are dependent variable, the other two are indepent variable. The number of possible
combinations generated by four variable, taken two at time, is six. Thus, there are six possible sets of
equations describing a two-port network.




OPEN CIRCUIT IMPEDANCE (Z) PARAMETERS

A general linear two-port network is shown below in figure 1.2.

The z parameters of a two-port network for the positive direction of voltages and currents may be

defined by expressing the port voltages Ié\hd Vin terms of the currents L énd Hl:re aInd
are two dependent varlaﬁies anc] and are two independent variables.
1 "rl Iz g
+o——> | 4q be | —— 3>
I“P“tl ¥, y, Ouiput
- ’ , r. ‘.'pm
X G— bof——e2
Figure 1.2

The voltage at port 1-1’ is the response produced by the two currents 1 and >

thus
W =2nh t+21h
Vo =2p4hy + 222k

211_-31'; E"'l and Z;; . .
= F = are the network functions, and are called impedance(Z) parameters,
and are

defined by equations 1.1and 1.2.
These parameters also can be represented by Matrices .
We may write the matrix equation [V] = [Z][I]

51
where V is the column matrix = [ 2, |

dyy 213
Zis asquare matrix= L =_ - y]
and we may write 'l'in the column matrix = = ]
1 2y 2y & i
Thus, [lr 1= [“ﬂi “n-.][f_-] f.{

The individual Z parameters for a given network can be defined by setting each of the port currents equal
to zero. suppose port 2-2’ is left open circuited, then {: =0.




Thus &1 == 1 =10
&£

where
Zy4 izthe driving point impedance at port 1 — 1'withport 2 -

2'open circuited. It iz called the open clreudt input iImpedance.

similarly,

Z-3 b=0
-

where
Z;4 i3 the transfer impedanceat portl — 1'withport2 -

2'open circuited. It iz called the open clrouit forward transfer impedance

Suppose port 1-1 is left open circuited, then %1 =0.
Thus, 2z =f h=0

where
&3 lzthe transfer Impedanceatport2 —2' withport1 -
1'open clremited. It iz called the open clroult reverss transfer impedance

similarly,

z~:=i§§f1=c=

where
Z:: iz the open clreultdriving point impedance at port 2 — 2'with port 1 —

1'open circuited. It iz also called the open circuit output impedance
.The equivalent circuit of the two-port networks governed by the equations 1.1 and 1.2 ,i.e. open circuit
impedance parameters as shown below in fig 1.3.

_’-11 -_— ’2 y

1 z"‘
T L1 Zy T
V1 Vz

| Zizhy AN Zty

N 2

Eiw 182

Figure 1.3




If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

Ll =0 £ h=0
Ha = £

or

2= 2y

It is observed that all the parameters have the dimensions of impedance. Moreover, individual
parameters are specified only when the current in one of the ports is zero. This corresponds to one of
the ports being open circuited from which the Z parameters also derive the name open circuit
impedance parameters.

Problem 1.1
Find the Z parameters for the circuit shown in Figure 1.4

Figure 1.4

Solution The circuit in the problem is a T network. From Eqs 16.1 and 16.2 we have
"\Yl = ZH 11 = ZI:I: and ]\-": = 2:111 'f'Z::I:
When port b-b’ is open circuited,

V4

Iy

Ji1=

Where V; =1li{z. +2)

Where =L Z;, h By =2

When port a-a’ is open circuited, [1=0




Z,._ =L =0
“E 1
where Va2 =&+ ;)

Lo =2+ Ec)

Ly

g=—Abh=0
i

where V1 =012, and &1z =2,

It can be observed that <12 = £21 , so the network is a bilateral network which satisfies the

principle of reciprocity.

SHORT-CIRCUIT ADMITTANCE (Y) PARAMETERS

g [ by -— .2
1 & ; +
Linaar
Vi network Vo
o ; = e
Figure 1.5

A general two- port network which is considered in Section 16.2 is shown in Fig 16.5The Y parameters
of a two- port for the positive directions of voltages and currents may be defined by expressing the

port currents  and in tdtms of the voltages and .71Here1"‘2, 1 afe dependent
variables and Y1and ¥z are independent variables/ may be considered to be the superposition
of two components, one caused b{i and the otherthy
Thus,

I =TVt TaTo s 13

Iz = Y21 ¥y + Y3,V

SIMIlarly, 1.4

Y11, Y0 ¥in and Ye2

are the network network functions and are also called the admittance

(Y) parameters. They are defined by Eqs 16.3 and 16.4. These parameters can be represented by matrices

as follows

(1]=[¥][V]

I 1 Ty i
where I=[Ii]; Y=[‘f:1 ‘1*_--1] andv:[:’.{]




Thus ,

I, Yy Ya Vi
L1l vl

The individual Y parameters for a given network can be defined by setting each port voltage to zero.
If we let V3 be zero by short circuiting port 2-2’ then

Y =2 v- g

T
is the driving point admittance at port 1-1’, with port 2-2’ short circuited.It is also called the

short circuit input admittance.
¥ = 1—] Va
-0
Tz
is the transfer admittance at port 1-1’, with port 2-2’ short circuited.lt is also called the short circuited
forward transfer admittance. If we let V; be zero by short circuiting port 1-1’,then

N |
Yiz =H vy =0
g

Y12 is the transfer admittance at port 2-2’, with port 1-1’ short circuited. It is also called the short

circuited reverse transfer admittance.
Y =]—= vy <0

Yoo is the short circuit driving point admittance at port 2-2’, with port 1-1’ short circuited. It is also

called the short circuited output admittance.The equivalent circuit of the network governed by equation
1.3 & 1.4 is shown in figure 1.6.

—e 4

1 2

1
»} w[Jwndy D[]

Figure 1.6

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

=
5
I

k. .I_lt‘t'

0 %T-::G




¥a=Yu

It is observed that all the parameters have the dimensions of admittance. Moreover, individual

parameters are specified only when the voltage in one of the ports is zero. This corresponds to one of

the ports being short circuited from which the Y parameters also derive the name short circuit

admittance parameters.

Problem 1.2 Find the Y-parameters for the network shown in Fig.1.7

a AVAYAY AVAVAY, ' 3 b
T h 10 20 1
Vi 2Q 4Q Vs
| !
a \ ) b’
Figl.7
Solution :
(14 =:—- v. =0

When b-b" s short circuited, V- = 0 and the network looks as shown in Fig. 1.8(a)

T - 3
Vi — Zeq 2Q

R

a

Fig.1.8(a)

bl




1 :lizeq
Zeg=24
So, Vy =l 2
b= s
Yoy == Va0
Vi

When b-b'is short circuited, -

r

so,-I; =

and Vg4 =_:T‘ Nyl

- -

similarly, when port a- is short circuited, V» = 0 and the network looks as show
in Fig. 1.8(b)

n




———h-! -——

1 I

Iz
Y;: =ﬁ vy =0

Vs =IgZ;g where 2 is the equivalent impedance as viewed from b-o'.

g ==
LegT D
Vo=l %2
=

1 5
1{:: = ‘—;-;- 1;‘1 = =D
- I-‘
T2 = '{":l V4 =0

-

with a-&’ is short circuited , -13 = " I»

Since , I; =5

The describing equations in terms of tye admittance parameters are

=

73
=k

L= 2v +

X

_Ev.g.ir
¢ z +Tg's

._.
i




Transmission (ABCD) parameters

— Iy By
+
1; 2
v Ve
; 0 . 2
Figure 1.9

Transmission parameters or ABCD parameters are widely used in transmission line theory and cascaded
networks. In describing the transmission parameters, the input variables and1 at"port

1-1’, usually called the sending end are expressed in terms of the output variables 1 and at port
2-2’, called, the receiving end.The transmission parameters provide a direct relationship between input
and output.Transmission patameters are also called general circuit parameters, or chain nparameters.

They are defined by

The negative sign is used with -z, and not for the parameter B and D. Both the port currents % and -

I- are directed to the right, i.e. with a negative sign in equation a and b the currents at port 2-2’ which
leaves the port is designated as positive.The parameters A,B,C and d are called Transmission
parameters. In the matrix form, equation a and b are expressed as ,

F 4 B, Va
[1,1=[¢ pli-f]
Thematrix  [5 DI
e matrix C D is called Transmission Matrix.

For a given network, these parameters can be determined as follows. With port 2-2’ open circuited

i.e.  I,=0;applying a voltage V at the port 1-1’, using equ a, we have
A:'!'-.'r' 1[: = { and C::]-E‘- if = (]
1 Ve
hence, — ===y =10 =g§31/i»=0
A W
1 Ve
. . . . . . — i- = 0 =I—1i i
1/A is called the open circuit voltage gain a dimension less parameter. C 51 2 And

V> =0, applying




=0 is called open circuit transfer impedance. with port 2-2’ short circuited, i.e. voltage

Vi at port 1-1’ from equn . b we have
Ve
2l a="0 I—"r;=0
- -B= and -D=1z
1
_ 2 =2l =0 =Yy i-=0 s called short circuit transfer admittance
B wml ™ 3
and,
S |
e i I—z' s = 0 =0y | v.=0 Iiscalled short circuit current gain a dimension less parameter.
L
Problem 1.3

Find the transmission or general circuit parameters for the circuit shown in Fig.1.10

—D-"’ — :'2
at —AAN AN *
T 1Q 20 T
v‘l 5Q V2

r
a i
Fig. 1.10
Solution : From Equations 1.5 and 1.6, we have
?1 = .‘H-'T: e Bf:
I; - Etn"; — D];
when b-b’ is open circuited i.e. 'z =0, we have
A= ;:r" !: - 3
V, =6 1; and V- =E l;where and hence, A= £ gng
L




when b-b’ is short circuited i.e. I =0, we have

B=-=% r;=0 and D=-% v, =0
i s

In the circuit, -1 —— 'uj and so, B——..
D

Iy = Vi similarly, and -I, -f_ Vi

and hence D =

Hybrid parameters

Hybrid parameters or h-parameters find extensive use in transistor circuits. They are well suited to
transistor circuits as these parameters can be most conveniently measured. The hybrid matrices
describe a two-port network, when the voltage of one port and the current of other port are taken as
the independent variables. Consider the network in figure 1.11.

If the voltage at port 1-1’ and current at port 2-2’ are taken as dependent variables,we can express
them in terms of nd V-

W=haly +a Vs

it e T 1.8

The coefficient in the above terms are called hybrid parameters.In matrix notation

B by
[1.]— hm h«.][\]

i 1,

. . b._Li'z
Py V. Jutput
port ! 2 port
B e bet——s2

Figure 1.11

from equation a and b the individual h parameters may be defined by Iettlng S Yo.




when Vs = 0,the port 2-2’ is short circuited.

L * =0 = short circuit input impedance.

- =0 = short circuit forward current gain

Similarly, by letting port 1-1’ open, I; =0

W
b -4 o .

“z! " =0 = open circuit reverse voltage gain
e = 2| 1y o .

Vel "=0 =open circuited output admittance

Since h-parameters represent dimensionally an impedance, an admittance,a voltage gain and a current

gain, they are called hybrid parameters .An equivalent circuit of a two-port network in terms of hybrid

parameters is shown below.

b

1 ' M B T
29
w ™" I
l iz Va :
Figure 1.12
Problem 1.4

Find the h-parameters of the network shown in Fig 1.13.




a AA'A% NV PN ’2 s
> ' %ol
[
v, ? bt P AT
ar
Fig.1.13
Solution :
From equations 1.7 and 1.8, we have
v ) Ve L .
by =f vy =0 ; Bgy =i v;=0;Mag =] li=q; Maz =i i =0

If port b-b’is short circuited, V-

=0 and the network looks as shown in Fig. 1.14

a AAYAY, b VAYAY; h b
T “h 10 20
— V §29 §4Q V=0
Zﬁq
a b’

Fig.1.14(a)




1=
Iy :!—‘ va=0; Wi =& Zgg
(4
Z_, is the equivalent impedance as viewed from porta-a’ is 2Q

S0, 1«"-_1 = 112 vV

Va

by === 2Q

| I 1
by =3 v =0 when v'; =0; -1> = — and hence ;3 =-

If port a-a'is open circuited, I; = 0 and the network looks as shown in Fig. 1.14(b) then

. b
—> =0 VW =5 1‘
L 1Q 20
T :
72 g 20 4Q V2
Fig.1.14(b)

hi: :::_n I4=p andV-i-I 2 1 ‘—“‘1:5
Vo=14;1=2

vy B i . 1
n === ja_a== and h-m == I4=0 =
by i.f=| 1=0=] 2=l -

INTER RELATIONSHIPS OF DIFFERENT PARAMETERS

Expression of z parameters in terms of Y parameters and vice-versa

From equations 1.1,1.2,1.3 & 1.4, it is easy to derive the relation between the open circuit

impedance parameters and the short circuit admittance parameters by means of two matrix equations

of the respective parameters. By solving equation a and b for and [} we ge[E




‘;‘ - a 2. “5
I = [VE :1'] A, ; and I, = [:11 Vj:]/*'z"z

“21 N ~21

where A is the determinant of Z matrix

Zin <
el T & OO 1.9
&z &g
2z Egg
ik b 1.10

. Zgy L. &g
Ty oo = gy
- (o tea =g

-7 g

In a similar manner, the z parameters may be expressed in terms of the admittance parameters by solving
equations 1.3 and 1.4 for V; and V5

I
5 I Y‘: ¥ _1-1 1
= [If 'fi_] /-ﬂ'l_-,- ; \' [&:1 I;];dz and

h A . . .
MRS 4 is the determinant of Y matrix

. . 25 1.11

comparing equations 1.11 and 1.12 with equations 1.1 and 1.2 we have

— Y Yen
Ly == . Lja=-=
-t -:I'

General Circuit Parameters or ABCD Parameters in Terms of Z parameters and
Y Parameters

We know that




h=AV;—Bly; W=Zyh +2550 ; Iy = Y11 Vg + YWy

L=CVW-D) ; Vi=2g0 +251; ; [z = Y31V +Y355¥;
A=§J‘ ;=0 C=g?i"3'g='.l ; B=-y"' i':=0;D=-:—: e =10

Substituting the condition I, =0in equations 1.1 and 1.2 we get

s Dae
—_ J-m ] _ =
A= - Epe

Substituting the condition Iz =0 in equations 1.4 we get,

Substituting the condition !z =0in equations 1.2 we get

: L
= T Eme
Substituting the condition Iz =0 in equation 1.3 and 1.4 and solving for V, gives =l ‘1—-

Where 4y s the determinant of the admittance matrix

Substituting the condition V- =0in equations 1.4, we get

ﬁlu,=o -.* -8
] Yaa
— W . . . I gives -Vy z_
Substituting the condition ¥z =0 in equation 1.1 and 1.2 and solving for Sz
Where 2- is the determinant of the impedance matrix
Y. "
= = 0 i =
- L L Zie 8 =
Substituting the V> condition =0 in equation 1.2 we get,
. | P Zm
k| el - Z: =D

Substituting the condition V- =0in equations 1.3 and 1.4

we get




T and 7 representation

A two-port network with any number of elements may be converted into a two-port
threeelement network. Thus, a two-port network may be represented by an equivalent

Tnetwork, i.e. three impedances are connected together in the form of a T as shown in
figure 1.15.

1" 1 1%

W 24, & Iy
Vi :l Z; Vs
1" = = o
Figure 1.15

It is possible to express the elements of the T-network in term of Z parameters,or ABCD parameters
as explained below.

Z parameters of the network

Ve !
21::T| I: ZE_ZJ :O =
zn:‘—;i 15 zZ o -
=0 = z:-: —zi' [lzt"d‘.'f
L=l 1, Z.
=0 - ZI- ) 11 £

From the above relations, it is clear that




2y =2y - &
Zy, = 25 - 8y
Z, =234
ABCD parameters of the network

w, Za+2
A=—ill, =0 = —2—E
?‘3 = 2:

When 2-2'is short circuited

- t-’-l_z,;-
27 ZpZo+Eg Ty 42

: F1Y
B=|:.ZE~'-Z,))+ _;:h

==kl v -
D= T;-l Y
When 2-2'is short circuited

-
_IH = 11 ———
= Ei-_"'z.-

_ Ipel
D= e

From the above relations we can obtain

i :E ;z'_:ﬂ;z_:l

a c - c 1

Problem :1.6

The Z parameters of a Two-port network are Zy=100 , Zyp = 180, 2p=25, =50.

Find the equivalent T network and ABCD Parameters.

Solution :




The equivalent T network is shown in Figure 1.16
where Z_=2Z,y -Z;; =50Q

Z.=23;-24,=100

and Z, =50

The ABCD parameters of the network are

B

2B
A=+1 Lo L)+ 7= =2;B=(=250

ra

Z;
C= T3 -0.02; D=1

[&¥] I P
i

In a similar way a two-port network may be represented by an equivalent Znetwork, i.e. three
impedances or admittances are connected together in the form of as shown in Fig 1.17.

LR | o=
Zs Z,
|=
+ 1
=" 4
= + Y, I =
V1 [ Y~| Y3 Yz
Fig. 1.16 Fig.1.17

It is possible to express the elements of the 7 -network in terms of Y parameters or ABCD parameters
as explained below.

Y-parameters of the network




- 1 Yy +Y, = _

11 =T| ¥ 142 =0 =
".{- -

Yoy =2 ve Y; =0 =
L3

"{~: :]—= Vq Y’3+Y.:

2=y

. Y2

13 = Ve Vi -0 =

=0 =-

From the above relations , it is clear that
Yy=Yyq +¥5q

Yo=Yy

Ya=¥gs +¥2

Writing ABCD parameters in terms of Y parameters yields the following results.
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9.1 CLASSIFICATION OF FILTERS




Afilter is a reactive network that freely passes the desired band of frequencies while almost
totally suppressing all other bands. A filter is constructed from purely reactive elements, for
otherwise the attenuation would never becomes zero i n the pass band of the filter network. Filters
differ from simple resonant circuit in providing a substantially constant transmission over
the band which they accept; this band may lie between any limits depending on the design.
Ideally, filters should produce no attenuation in the desired band, called the transmission
band or pass band, and should provide total or infinite attenuation at all other frequencies,
called attenuation band or stop band. The frequency which separates the transmission band
and the attenuation band is defined as the cut-off frequency of the wave filters, and is
designated by fc

Filter networks are widely used in communication systems to separate various voice channels
in carrier frequency telephone circuits. Filters also find applications in instrumentation, telemetering
equipment etc. where it is necessary to transmit or attenuate a limited range of frequencies. A filter
may, in principle, have any number of pass bands separated by attenuation bands.However, they are
classified into four common types, viz.low pass, high pass, band pass and band elimination.

Decibel and neper

The attenuation of a wave filter can be expressed in decibels or nepers.Neper is defined as the
natural logarithm of the ratio of input voltage (or current) to the output voltage (or current), provide that
the network is properly terminated in its characteristic impedance Zo .

11 ’2

Two Port
vy N.W. V2

Fig.9.1 (a)

From fig. 9.1 (a) the number of nepers, N=loge [V1)V2] or loge [ly>]. A neper can also be
expressed in terms of input power,P; and the output power P> as N=1/2 loge P1/P,. A decibel is defined
as ten times the common logarithms of the ratio of the input power to the output power.  Decibel
D=10 log10P1/P>

The decibel can be expressed in terms of the ratio of input voltage (or current) and the output voltage
(or current.)




D=20 |Og10[V1/V2] =20 |0g10[|1/|2]

* One decibel is equal to 0.115 N.

Low Pass Filter

By definition a low pass (LP) filter is one which passes without attenuation all frequencies
up to the cut-off frequency f., and attenuates all other frequencies greater than f. The attenuation
characteristic of an ideal LP filter is shown in fig.9.1(b).This transmits currents of all frequencies

from zero up to the cut-off frequency. The band is called pass band or transmission band.Thus,the
pass band for the LP filter is the frequency range O to f.The frequency range over which
transmission does not take place is called the stop band or attenuation band. The stop band for a LP

filter is the frequency range above f; .

T Pass
o

Attenuation
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Low Pass Filter
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Band Band Band
f1 f2 — f

Band Pass Filter

High Pass Filter

Fig.9.1 (b)
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High Pass Filter
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Band Elimination Filter

A high pass (HP) filter attenuates all frequencies below a designated cut-off frequency, f., and
passes all frequencies above f.. Thus the pass band of this filter is the frequency range above f, and
the stop band is the frequency range below f. . The attenuation characteristic of a HP filter is shown in

fig.9.1 (b).

Band Pass Filter

A band pass filter passes frequencies between two designated cut-off frequencies and
attenuates all other frequencies. It is abbreviated as BP filter. As shown in fig.9.1 (b), a BP filter has two




cut-off frequencies and will have the pass band f, — f;; f1 is called the lower cut —off frequency, while f,
is called the upper cut-off frequency.

Band Elimination filter

A band elimination filter passes all frequencies lying outside a certain range, while it attenuates all
frequencies between the two designated frequencies. It is also referred as band stop filter. The
characteristic of an ideal band elimination filter is shown in fig.9.1 (b). All frequencies between f;

and f> will be attenuated while frequencies below f; and above f, will be passed.

9.2 FILTER NETWORKS

Ideally a filter should have zero attenuation in the pass band. This condition can only be satisfied
if the elements of the filter are dissipationless.which cannot be realized in practice. Filters are
designed with an assumption that the elements of the filters are purely reactive. Filters are made of
symmetrical T, or it section. T and 1t section can be considered as combination of unsymmetrical L
sections as shown in Fig.9.2.

‘gL £ _121 Zy
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(a) (b)
i e — i:} p— _L___}. e ————————— = B ______{:}__ et
[J1 [] 22 H)J 2z, []ez
(c) () -
Fig. 9.2

The ladder structure is one of the commonest forms of filter network. A cascade connection
of several T and m sections constitutes a ladder network. A common form of the ladder network is
shown in Fig.9.3.

Figure 9.3(a) represents a T section ladder network, whereas Fig.9.3 (b) represents the it section ladder
network. It can be observed that both networks are identical except at the ends.
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Fig. 9.3

9.3 EQUATIONS OF FILTER NETWORKS

The study of the behavior of any filter requires the calculation of its propagation constant VY, attenuation a,
phase shift B and its characteristic impedance Zo.

T-Network

Consider a symmetrical T-network as shown in Fig. 9.4.

L Z,
1 2 2 2
——AAA~
z2 ZO
17 e
Fig.9.4

If the image impedances at port 1-1' and port 2-2' are equal to each other ,the image
impedance is then called the characteristic, or the iterative impedance, Zo.Thus, if the network in
Fig.9.4 is terminated in Z o, its input impedance will also be Zg. The value of input impedance for the
T-network when it is terminated in Zgis given by
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The characteristic impedance of a symmetrical T-section is

2 .

(9.1)

Zor can also be expressed in terms of open circuit impedance Zoc and short circuit impedance

Z scof the T—network . From Fig. 9.4, the open circuit impedance Z oc =Z1/2+Z, and

< X Z5
- Z, 2
BT i
2' + Z,
_Z? +4z,7,
e A T A
2

ZU(.' = ‘Z.s‘(: -y Zl z2 it T
T -
=Zor O Zor = ZocZs

(9.2)




Propagation Constant of T- Network

By definitation the propagation constant Y of the network in Fig.9.5 is given by ¥ = log e I1/1>
mesh equation for the 2nd mesh, we get
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The characteristic impedance of a T — network is given by

2
Zor = \/—4—1‘ + Z,Z,

Squaring Esq. 9.3 and 9.4 and subtracting Eq.9.4 from Eq.9.3, we get

Writing the

(9.3)

(9.4)
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Rearranging the above equation, we have
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e V(e 41—2e¥)=1
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Dividing both sides by 2, we have
e’ e Zy
=1+
2 27,
coshvy =1+ £
27

(9.5)

Still another expression may obtained for the complex propagation constant in terms of the
hyperbolic tangent rather than hyperbolic cosine.




sinh y = \/cos h? Y —
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(9.6)
Dividing Eq.9.6 by Eq.9.5, We get
e
tanh v = L —
- 1
Z
L =
But ZZ + T v — ZO(‘
2
Also from Eq. 9.2,
Lor = Z{!(‘Z:
h = ZS('
tanh y = Zo.
Also sinh % = {% (coshvy —1)
Where coshy = 14+(Z,/2Z,)
el _,Zl
s 9.7)

nt— Network

Consider asymmetrical m — section shown in Fig. 9.6. When the network is terminated in Zo at port 2 —
2" its input impedance is given by

Z4 o>
1= > == INNLN =
I / R
27> 2Z5 Zo
1" e— —

Fig.9.6
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Rearranging the above equation leads to
Zo = lez
3 142, /3Z;

which is the characteristic impedance of a symmetrical mr-network
2,2,

NEZT 2T /4

(9.8)

Z()-rr =

From Eq. 9.1

Zor. =7 +2Z,2,

- = 1—2
J(l-rl' - =
o

(9.9)
Z orcan be expressed in terms of the open circuit impedance Z oc and short circuit impedance

Z sc of the m network shown in Fig.9.6 exclusive of the load Z .




From Fig.9.6, the input impedance at port 1- 1" when port 2 —2'is open is given by

y 222(2, +223)
énr_' 3 7 -
2 —le2

Similarly, the input impedance at port 1 — 1" when port 2 — 2’ is short circuit is given by
4 2Z:7Z
' 2Z, + Z,

R L
4Z2; L 44

Hence 2, %XZ, = - = —
: Z,+4Z, 1+ 2Z,/4Z,

Thus from Eq. 9.8

L VR
O \/ Oc¢ 5S¢ (9.10)

Propagation Constant of m — Network

The propagation constant of a symmetrical T — section is the same as that for a symmetrical T —
Section.

Z)
27,

9.4 CLASSIFICATION OF PASS BAND AND
STOP BAND

i.e. coshy=1+

It is possible to verify the characteristics of filters from the propagation constant of the network. The
propagation constant Y, being a function of frequency, the pass band, stop band and the cut-off
point, i.e. the point of separation between the two bands, can be identified. For symmetrical Tor m —
section, the expression for propagation constant Y in terms of the hyperbolic functions is given by Eqs
9.5 and 9.7 in section 9.3. From Eq.9.7, sin h¥/2 =V(Z 1 /4Z,) .

If Z; and Z; are both pure imaginary values, their ratio, and hence Z; /4Z,, will be a pure real number.

Since Z; and Z; may be anywhere in the range from -j, to +j« , Z1 / 4Z, may also have any
real value between the infinite limits . Then sin h Y/2 =VZ ; /v4Z, will also have infinite limits, but may
be either real or imaginary depending upon whether Z; / 4Z; is positive or negative.




We know that the propagation constant is a complex function ¥ = a+jB , the real part of the
complex propagation constant a, is a measure of the change in magnitude of the current or voltage in
the network ,known as the attenuation constant . B is a measure of the difference in phase between
the input and output currents or voltages. Known as phase shift constant Therefore a and 3 take on
different values depending upon the of Z;/ 42, . From Eq.9.7, We have

oo B B

= sinh—cos = + jcosh Lsint
A 2 2

(9.11)
Case A

If Z; and Z, are the same type of reactances, then [Z; / 4Z, ] is real and equal to say a+x . The

imaginary part of the Eqg. 9.11 must be zero.

cosh X sin E; =1{)
2 2

(9.12)
sinh u cos E —
2 2
(9.13)

a and B must satisfy both the above equations.

Equation 9.12 can be satisfied if B/2 = 0 or nit, where n=0, 1, 2,....., then cos B/2 = 1 and sinh a/2=x =V(
7.1/ 4Zy)

That x should be always positive implies that

/
LIS 0and a = 2sinh ™

[ 5

7,

(9.14)
Since a #0, it indicates that the attenuation exists.




Case B

Consider the case of Z; and Z; being opposite type of reactances, i.e. Z; / 4Z, is negative , making v
71/ 4Z, imaginary and equal to say Jx

*The real part of the Eq.9.11 must be zero.

Ly

. o
sinh —cos — =
2 o)

(9.15)
Oy
cosh—sin—=x
2
(9.16)

Both the equations must be satisfied simultaneously by a and B. Equation 9.15 may be satisfied when
a =0, or when = . These conditions are considered separately hereunder

(i) When a = 0; from Eq. 9.15, sinh a/2 =0.and from Eq.9.16 sin B/2 = x =V( Z1 / 4Z;) . But the
sine can have a maximum value of 1. Therefore, the above solution is valid only for negative Z,/4Z,,
and having maximum value of unity. It indicates the condition of pass band with zero attenuation
and follows the condition as

g
1 < —— =0
az,
B = 2sin! i
az,

(9.17)
(ii) When B =, from Eq.9.15, cos B/2 = 0. And from Eq.9.16, sin /2 =+ 1; cosha/2 =x=V (Z1/
47,)

Since cosh a/2 2 1, this solution is valid for negative Z; / 4Z, ,and having magnitude greater

than, or equal to unity. It indicates the condition of stop band since a # 0.

4z,

o =—="2'¢cosh

(9.18)

It can be observed that there are three limits for case A and B. Knowing the values of Z;
and Z, it is possible to determine the case to be applied to the filter. Z; and Z, are made of different
types of reactances, or combinations of reactances, so that, as the frequency changes, a filter may
pass from one case to another. Case A and (ii) in case B are attenuation bands, whereas (i) in case B is
the transmission band.




The frequency which separates the attenuation band from pass band or vice versa is called
cut-off frequency. The cut-off frequency is denoted by fc, and is also termed as nominal frequency.
Since Zo is real in the pass band and imaginary in an attenuation band, fc is the frequency at which Z,
changes from being real to being imaginary. These frequencies occur at

4:‘(; =Qor Z, =0
= 9. 18(a)
Z lorZ, +4Z, =0
= —10r - ==
9.18 (b)
The above conditions can be represented graphically, as in Fig.9.7.
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Fig. 9.7

9.5 CHARACTERISTIC IMPEDANCE IN THE
PASS AND STOP BANDS

Referring to the characteristic impedance of a symmetrical T-network, from Eqg. 9.1 We have

3

72 7
Zon=d—++22, = |22, |1+ =
07 4 1649 142 422

If Zy and Z, are purely reactive, let Z; = jx; and Z, = jx> , then
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(9.19)

A pass band exists when x; and x, are of opposite reactances and

X

—— <0
4x,

—1<

Substituting these conditions in Eq. 9.19, we find that Zor is positive and real. Now consider the
stop band. A stop band exists when x; and x; are of the same type of reactances; then x1/4x, > 0.
Substituting these conditions in Eq. 9.19, we find that Zor is purley imaginary in this attenuation
region. Another stop band exists when x; and x , are of the same type of reactances, but with x1/4x, <
-1.Then from Eq.9.19, Zor is again purly imaginary in the attenuation region.

Thus, in a pass band if a network is terminated in a pure resistance Ro(Zor = Ro), the input
impedance is Ro and the network transmits the power received from the source to the Ro without any
attenuation. In a stop band Zor is reactive. Therefore, if the network is terminated in a pure
reactance ( Zo = pure reactance), the input impedance is reactive, and cannot receive or transmit
power. However, the network transmits voltage and current with 90° phase difference and with
attenuation. It has already been shown that the characteristics impedance of a symmet rical msection
can be expressed in terms of T. Thus, from Eq.9.9,Z0x = Z1Z5/Zor.

Since Z; and Z; are purely reactive, Zor is real, if Zor is real and Zo is imaginary if Zor is imaginary.
Thus the conditions developed for T — section are valid for t — sections.

9.6 CONSTANT -K LOW PASS FILTER

A network, either T or m, is said to be of the constant — k type if Z; and Z, of the network satisfy the relation

le 2= kz
(9.20)

Where Z; and Z, are impedances in the T and mt sections as shown in Fig.9.8.Equation 9.20 states that
Z; and Z; are inverse if their product is a constant, independent of frequency. K is a real constant




that is the resistance. k is often termed as design impedance or nominal impedance of the constant k
— filter.

The constant k, T or it type filter is also known as the prototype because other more complex network
can be derived from it. A prototype T and it —section are shown in
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Fig.9.8

Fig.9.8 (a) and (b), where Z; = jw.and Z; =1 / jwc . Hence Z1Z> = L /C = k? which is independent
of frequency.

(9.21)

Since the product Z; and Z; is constant, the filter is a constant — k type. From Eq.9.18 (a) the cut-off
frequencies are Z; /42, =0,

) = J
o R . O
4
1.e J =0 and - 1
—w?’LC ;
4
or S = -_]_____
wJLC
(9.22)

The pass band can be determined graphically. The reactances of Z; and 4Z, will vary with frequency
as drawn in Fig.9.9.The cut-off frequency at the intersection of the curves Z; and -4z; is indicated as fc .




On the X —axis as Z; = -4Z, at cut-off frequency, the pass band lies between the frequencies at which Z;
=O,and21=-4Zz.
Z4

Reactance Band

A

Fig.9.9

All the frequencies above fc lie in a stop or attenuation band , thus, the network is called a lowpass

filter . We also have from Eq.9.7 that
T A B —w’LC _ JoJLC
sinhY = [l = J =
2 \4z, 4 2

A= jl

Tk

S MR IR vy
2 2%f, Se

We also know that in the pass band

From Eq.9.22
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In the attenuation band,

Z, <—1,i.e.f<1 if s f
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4z,
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The plots of a and B for pass and stop bands are shown in Fig.9.10
Thus, from Fig. 9.10, a =0, B =2 sinh (f /fc ) for f< fc a

=2cosh™ (f/fc); B=mfor f>fc
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Fig .9.10

The characteristics impedance can be calculated as follows

. - e
Zor = (&1 Z2 |1+ 32
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From EQq.9.23, Zor is rael when f< fc, i.e.in the pass band at f = fc, Zor; and for f > fc, Zor is
imaginary in the attenuation band, rising to infinite reactance at infinite frequency . The variation of Zor

(9.23)

with frequency is shown in Fig.9.11
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Similarly, the characteristics impedance of a m — network is given by
o Lo k
Zow = 2 =
2
or

(9.24)

The variation of Zor with frequency is shown in Fig.9.11 . For f<fc, Zoris real ; at f = fc, Zor is
infinite , and for f> fc, Zor is imaginary . A low pass filter can be designed from the specifications of cut-
off frequency and load resistance.

At cut-off frequency, Z1 = - 42,

.
Jw C
w2 2LC = 1

Jw L =

Also we know that k = /L /' is called the design impedance or the load resistance

e
C
W32 k2C2 = ]
"= ——— gives the value of the shunt capacitance
/e
and L = k*C = —— gives the value of the series inductance.

T/,

o

Example 9.1.




Design a low pass filter (both m and T — sections ) having a cut-off frequency of 2 kHz
to operate with a terminated load resistance of 500 Q . solution. It is given that k = V(L /C) =500 Q,

and fc = 2000 Hz we know that L = k/mfc = 500/3.14 x 2000 = 79.6 mH

C=1/mfck = 1/3.14.2000.500 = 0.318 pF
The T and mt — sections of this filter are shown in Fig.9.12 (a) and (b) respectively.

L/2 = 39.8 mH L/12 = 39.8 mH L =796 mH

T T () 1)+ e e “BO00 ™
= L =L
b B
C = 0.3189 puf — = =
1] n
= £
L& (&7
(@) (b)
Fig.9.12
Constant K — high pass filter can be obtained by changing the positions of series and shunt arms of the
networks shown in Fig.9.8.The prototype high pass filters are shown in Fig.9.13,where Z; = -j/w¢ and
2 =jwl.
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Fig.9.13

Again, it can be observed that the product of Z; and Z; is independent of frequency, and the filter
design obtained will be of the constant k type .Thus, Z1Z, are given by




The cut-off frequencies are given by Z, =0 and Z, = -4Z, .

Z, =0 indicates j/wC=0,0orw > a
From Z,=-47,

-j/wC=-4jwL

w’LC=1/4

(9.25)
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The reactances of Z; and Z; are sketched as functions of frequency as shown in Fig.9.14.
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As seen from Fig.9.14, the filter transmits all fre

the graph is a point at which Z;=- 427, .

quencies between f = fc and f = a. The point fc from




From Eq.9.7,

From Eq. 9.25,
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In the pass band, -1< 21/4Z,< 0, a = 0 or the region in which fc / f< 1is a pass band B=2sin ! (fc/f
)

In the attenuation band Z1/4Z,< -1i.efc/f>1
a =2 cosh [Z1/4Z)]

=2cosifc/f);B=-1
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The plots of a and B for pass and stop bands of a high pass filter network are shown in Fig.9.15.

A high pass filter may be designed similar to the low pass filter by choosing a resistive load r

equal to the constant k, such that R=k=vL/C
1
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The characteristic impedance can be calculated using the relation
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Similarly, the characteristic impedance of a m — network is given by
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Fig.9.16




The plot of characteristic impedances with respect to frequency is shown in Fig.9.16.

Example 9.2.
Design a high pass filter having a cut-off frequency of 1 kHz with a load resistance of

600 Q.
Solution. Itis given that R, = K=600 Q and fc =1000 Hz
L =K /4nf. =600 /4 x mt x 1000 = 47.74 mH
C = 1/4nkfc = 1/4m x 600 x1000 = 0.133 pF

The T and it — sections of the filter are shown in Fig.9.17.

2C = 0.266 nF 2C = 0.266 pF C = 0.133 uF
g == ® | —=
.
§L=47.74mH 2L§ © 2L§ 95.48 m
Te)
(= )]
(a) (b)
Fig.9.17

9.8 m - DERIVED T - SECTION FILTER

It is clear from Figs.9.10 and 9.15 that the attenuation is not sharp in the stop band for k-type filters.
The characteristic impedance, Zo is a function of frequency and varies widely in the transmission
band. Attenuation can be increased in the stop band by using ladder section, i.e.by connecting two or
more identical sections. In order to join the filter sections, it would be necessary that their
characteristic impedances be equal to each other at all frequencies. If their characteristic
impedances match at all frequencies, they would also have the same pass band . However,
cascading is not a proper solution from a practical point of view .

This is because practical elements have a certain resistance, which gives rise to attenuation
in the pass band also. Therefore, any attempt to increase attenuation in stop band by cascading also
results in an increase of ‘a’ in the pass band .If the constant k section is regarded as the prototype, it
is possible to design a filter to have rapid attenuation in the stop band, and the same characteristic
impedance as the prototype at all frequencies . Such a filter is called m — derived filter. Suppose a
prototype T — network shown in Fig.9.18(a) has the series arm modified as shown in

Fig.9.18 (b) , where m is a constant . Equating the characteristic impedance of the networks in Fig.9.18,
we have




Z4/2 Z4/2 mZ/2 mZ4/2

TR s et e
. iE
‘ (a) e : (b) :

Fig.9.18

Zot = Zor’

Where Zor,is the characteristic impedance of the modified (m — derived) T — network.

J—4—'+Z,Zz — \/""4 L 4 mZ,Z}

ZZ 222
T +272,= fiz—‘-—- +mZ,Z!

2

ra

&
mZ]Z£ = —4'—(1 — mz)-i— Z,\Z,
b A
pid :_1(1_”’2)+_é
4m m

(9.27)

It appears that the shunt arm Z; consists of two impedances in series as shown in Fig.9.19.

=4 /2 =472
s 7y T P Goeo Jd——7
Z>frry

Z4(1—m>)
arr

Fig.9.19




From Eq.9.27, 1 — m?/4m should be positive to realize the impedance Z, physically,
i.e.0<m<1. Thus m — derived section can be obtained from the prototype by modifying its series and
shunt arms .The same technique can be applied to m section network. Suppose a prototype m — network
shown in Fig. 9.20 (a) has the shunt arm modified as shown in Fig. 9.20(b).

21 Z ’1
— ¢ D .
. |
2 2 H 22,/m U H 22,/m
(a) (b)
Fig.9.20
Zon =2 lOT[

Where Z o is the characteristic impedance of the modified (m — derived) m — network.

4-Z,/m

Z.\'
\l+ '




Squaring and cross multiplying the above equation results as under.

(42,2, +mZ[Z,) =

4z/z, + 7,2/

m
< 47
Z," ' R 2 mZ, |=42Z,Z,
m m “
or Zl’ = — 2-122
Z, _ Z, s mZ,
4m m 4
Z‘} Z’ %
" 1l —m~°
m 4m( g
R Z,4
Z\Z, s 5 mZ, £ n:
7! — a=m*) '™ (1—m*)
i o S 2 o Z,4
m(1 —m?) (1—m*)

(9.28)

It appears that the series arm of the m — derived mt section is a parallel combination of mz; and

4mZ, /1 —m? . The derived m section is shown in Fig.9.21. m

— Derived Low Pass Filter

In Fig.9.22 , both m — derived low pass T and nt filter sections are shown. For the T —section shown in

Fig.9.22(a), the shunt arm is to be chosen so that it is resonant at some frequency f, above cut-off frequency

fe.

If the shunt arm is series resonant ,its impedance will be minimum or zero .Therefore , the output
is zero and will correspond to infinite attenuation at this particular frequency . Thus, at f,

1/mw,C=1-m?/4m w, L, where w; is the resonant frequency




mZ4

> o
2Z-/m 1_4_051_ Z> 2Z5/m
" § 2
Fig.9.21
1-m?
T
mi/2 miL/2 it
w—- PAT _<E.71
L
1=t mcl2 — ok ot ol
&
am
(a) (b)
Fig.9.22
g A
T A—m?*)LC
f, = . .y
Cih ﬁ\/LC(l—mz) S
Since the cut-off frequency for the low pass filter is f. = 1/mvLC
s
€ Sk ey
1—m
(9.29)
v \2
or m= [1— [:;—‘]

(9.30)




If a sharp cut-off is desired,fs should be near to f. . From Eq.9.29,it is clear that for the smaller
the value of m,f, comes close to f. .Equation 9.30 shows that if f. and f, are specified , the necessary
value of m may then be calculated. Similarly, for m — derived it section, the inductance and
capacitance in the series arm constitute a resonant circuit . Thus, at f, a frequency corresponds to

infinite attenuation, i.e. at fy

mw, L = —— _.15 ot d
[l — m ]er,
4
w? = $ e
LC(—m~)
: 1
.f;' ;= >
‘rrJL("‘(l -m”*)
1
Since, o = ——=
N LC
f’ = _.{i_._j ¥
1 — e~

(9.31)

Thus for both m — derived low pass networks for a positive value of m(0<m < 1), fa>fc.
Equations 9.30 or 9.31 can be used to choose the value of m, knowing f.and f. After the value of m
is evaluated, the elements of the T or m — networks can be found from Fig.9.22. The variation of
attenuation for a low pass m — derived section can be verified from a = 2 cosh™ VZ,/4Z, for f< f< fo .
ForZ; = jwLand Z, = -j/wC for the prototype.

r

m-

a = 2cosh™!

Figure 9.23 shows the variation of a, B and Z, with respect to frequency for an m — derived low

pass filter.
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Fig.9.23

Example 9.3

Design a m — derived low pass filter having cut-off frequency of 1kHz, design impedance
of 400 Q, and the resonant frequency 1100 Hz.

Solution. k=400 Q, f-=1000 Hz; f,=1100 Hz

From Eq.9.30

/. 2 \/ [ 1000]2
N 1] e o g P e
” J [_/;c ] 1 11 0.416

Let us design the values of L and C for a low pass, K — type filter (prototype filter).

Thus,
k 400
L= — = = 127.32
wf.  ar=<1000 e
: 1 1
C= == = 0.795 wF

wkf.. ar < 400 <1000

[ &

The elements of m — derived low pass sections can be obtained with reference to Fig.9.22.

Thus the T-section elements are




mL  0.416x127.32x10°3
2 2

mC = 0.416 X 0.795 X 10¢ = 0.33 pF

= 26.48 mH

2 7 /
1—m” , _1-(0416) 157 132%10"3 =63.27 mH
4m 4-0416

The ar-section elements are

6
mC:O.4l6><0.795><10 0 16SuiE

2 2
2 2
1—m"  _1-(0416) _705%10"% = 0.395 uF
4m 4x<0.416 :
mL = 0.416 X 127.32 X 103 = 52.965 mH
The m —derived LP filter sections are shown in Fig.9.24.
52.965 mH
,_/'FHKB'\_-

26.48 mH 26.48 mH
0.395 uF \

sij‘

0.165 uF

63.27 mH

J
0.16
L

(a) (b)

Fig.9.24

m — Derived High Pass Filter
In Fig.9.25 both m — derived high pass T and it — section are shown.

If the shunt arm in T — section is series resonant, it offers minimum or zero impedance.Therefore,

the output is zero and, thus, at resonance frequency or the frequency corresponds to infinite

attenuation.




r 4m
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1 —m
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Fig.9.25
(1)2 - (,02 2 1 e 1 — m2
B = L 4m 41.C
G EC
m\l—m
dl—nf : 1—m?
- —_

——Or [ = ——
2NLE oS 4 LC

From Eq. 9.25, the cut — off frequency fc of a high pass prototype filter is given by

Je = ic
foo = fuN1—m?

(9.32)
P 2
m=_{l—~]==
i
(9.33)

Similarly,for the m — derived m —section, the resonant circuit is constituted by the series arm
inductance and capacitance . Thus, at f«
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Thus the frequency corresponding to infinite attenuation is the same for both sections.

Equation 9.33 may be used to determine m for a given f, and fc . The elements of the m — derived
high pass T or mt — sections can be found from Fig.9.25. The variation of a, B and Z, with frequency is

shown in Fig. 9.26.

B
o F I £
|
I
—7t : Pass band ____,
Attenuation

Band
(b)

Fig.9.26

Example 9.4.




Design a m-derived high pass filter with a cut-off frequency of 10kHz; design impedance

of 50 and m =0.4.

Solution .For the prototype high pass filter,

e T ol — 3.978 mH
anf. 4xmx10000 o™

1 |
C = - .
Arkf, 4w <500 x10000 S04 35w

The elements of m-derived high pass sections can be obtained with reference to Fig.9.25.Thus, the

T-section elements are

- sirg 2x<0.0159x<10 ¢

- — 0.07¢ ;
o 04 795 W F
L 3.978%x10 ° S
wy 0.4 T e
Ar2z 4 <0.4
——C=———— _0.0159 =6 -
oy (O > 10 0.0302 wF
The ar-section elements are
2L 2x%0.0159%1073
— 0 == 19.89 I“H
” 0.4
4 4 =<0.4
———a XL =——— %3078 x%10"3 = 7.
- . (0.4)2 3 7.577 mH

C  0.0159 —8
. D > 10 = 0.0397 uF

T and it sections of the m —derived high pass filter are shown in Fig.9.27.

7.5777 mH
0.0795 uF 0.0795 uF il L s i
11
— 8 T
% 9.945 mH £ g 0.0397 uF § £
[= ] o
o o
0.0302 uF B S
- 4 oy
(a) (b)

Fig.9.27




9.9 BAND PASS FILTER

As already explained in Section 9.1, a band pass filter is one which attenuates all frequencies below
a lower cut-off frequency f1 and above an upper cut-off frequency f.. Frequencies lying between
fiand f, comprise the pass band ,and are transmitted with zero attenuation .A band pass filter may
be obtained by using a low pass filter followed by a high pass filter in which the cut-off frequency of
the LP filter is above the cut-off frequency of the HP filter , the overlap thus allowing only a band of
frequencies to pass . This is not economical in practice; it is more economical to combine the low and
high pass functions into a single filter section .

Consider the circuit in Fig.9.28, each arm has a resonant circuit with same resonant
frequency, i.e. the resonant frequency of the series arm and the resonant frequency of the shunt arm
are made equal to obtain the band pass characteristic.

Ly
2C1 2C4 2 C1

S 7 =T

SO P P

L]
2

-

(a) (b)

Fig.9.28

For this condition of equal resonant frequencies.

For this condition of equal resonant frequencies.

L, I : :
o — = ———— for the series arm
2 2w,C
01
from which, ?,L,C, =1
(9.34)




1

and —— =L, for the shunt aiii
e
: 2
from which, — oyL,C, =1
(9.35)
Wl Cy — 1= w3 I,C,
AN = R s
(9.36)
The impedance of the series arm, Z, is given by
5 2
3 3 7 Jo Ly Cy—1
t,’ == —_— — == _
= (e
The impedance of the shunt arm, Z, is given by
1
NAT y
Z, = L JwCy Jwol,
2
LS e e TS O
JoCy
2 3 :
LZy = j[m L;C‘, 1] J(‘:lq
wC 1 —w "L, C,
=L, | o*L,C —1
Cy |1—w?L,C,
From Eq.9.36
L'(I‘l = L2(-‘2
Z\Z5 %= ﬁ 4 ﬁ_ e /o
GG G

Where k is constant. Thus, the filter is a constant k —type .Therefore, for a constant k — type in the pass

band.

Z

2

i
Zl
v
Zl

< 0, and at cut-off frequency
e 422
= —4Z,Z, = —4k?

* j2k




i.e. the value of Z; at lower cut-off frequency is equal to the negative of the value of Z; at the upper cut-off

frequency .
I E LTI
J@,C, J @y Jw,Cy 5 LA

1 1 '

L, — = — @, L
o [wl ' ‘-0|C|] [‘”ZCI 5 l]
A—?L,C) = 2L (w2L,C, —1)
Wy
(9.37)

From Eq.9.34, L1C;1 = 1 /w?

Hence Eq.9.37 may be written as

2 2

s 0 PRI L
2 w 2
Wg 2 W,

2 2 2 2
(;"o —®])w,; = w(w; —wg)
B 2 2 2
‘”0;"’2 - WS ="0 W5 = Ww,
Wo (W) + ;) = ww, (w, + w,)

Wy = W,

JSo=JALs

(9.38)
Z, = - 2jk
| | |
o I I I
< | Pass band | | z
S [ |
o | - 42,
| | |
t T {
f1 [ I fu l' fz — f
I |
I I I
| | |
| | |
; —475 I :




Thus, the resonant frequency is the geometric mean of the cut-off frequencies. The variation

of the reactances with respect to frequency is shown in Fig.9.29.

If the filter is terminated in a load resistance R = K, then at the lower cut-off frequency.

|
o 800 o Wil Y ; ¥ Sy .
[j(_o,C, Heien <JF
1 w,; L, 2k
W, : 3

Since L,C) = LA
Wg
e .
— -——2—‘ — ka|C.1
Wy
or | —[—/!—] Fraa '4'"“("1
Jo
L _.i = 4rkf,C, C.' Jo= \/f—f)
7 ’ ¢ J1J2
1> —Ji = 4wkf, /5C,
- J2—A
Y amky, S
(9.39)
Since Licy = —
Wy
1 awkf, /5
iy R i 1
0pCy (2 — 1)
Ly == .k ;
w(fy — Ny)
(9.40) z

To evaluate the values for the shunt arm, consider the equation

lel :LTzzi.!_zk?_
(‘I CZ
L= Ok e R S1 )8
A ant, 15

(9.41)




and C= —62— = —-—l——
k* w(f,— )k

(9.42)

Equations 9.39 through 9.42 are the design equations of a prototype band pass filter. T he variation
of a, B with respect to frequency is shown in Fig.9.30 .

—_—

o i B el 3
Fig.9.30
Example 9.5.

Design k —type band pass filter having a design impedance of 500 Q and cut-off frequencies
1 kHz and 10 kHz.

Solution .
k=500 Q; f, = 1000 Hz; f, = 10000 Hz

From Eq.9.40,

k o o
L = PEARL =2 mH = 16.68 mH

Calf,—f,) w9000

From Eq.9.39,

L 9000 e
" dmke f,  4xwx500%1000x 10000

43 wWF

From Eq.9.41,

L, = C/k* =357 mH

From Eq.9.42,




Cy =3 = 0.0707uF
Each of the two series arms of the constant k, T— section filter is given by

5 1708 feeaien
2 2

2C, = 2 X 0.143 = 0.286 wF

And the shunt arm elements of the network are given by
C, = 0.0707 wF and L, = 3.57 mH

For the constant-4, 1t section filter the elements of the series arm are
C, = 0.143 pF and L, = 16.68 mH

The elements of the shunt arms are

C ;
— = M = 0.035 pF
2 .

2L, = 2 X 0.0358 = 0.0716 H

9.10 BAND ELIMINATION FILTER

A band elimination filter is one which passes without attenuation all frequencies less than the lower
cut-off frequency fi, and greater than the upper cut-off frequency f, . Frequencies lying between f;
and f; are attenuated. It is also known as band stop filter. Therefore, a band stop filter can be realized
by connecting a low pass filter in parallel with a high pass section, in which the cut-off frequency of
low pass filter is below that of a high pass filter. The configurations of T and 1t constant k band stop
sections are shown in Fig.9.31. The band elimination filter is designed in the same manner as is the
band pass filter.

L4/2 L4/2 Ea
— 88 ) — 88 BB
i’ it L
2C4 Ly Ci 2L, 1 214
C Co/2 ColP
i i 1
(a) (b)

Fig.9.31




As for the band pass filter, the series and shunt arms are chosen to resonate at the same frequency w
o . Therefore, from Fig.9.31 (a) , for the condition of equal resonant frequencies

w L 1 : :
—9 1 — ___ for the series arm
2 2w, C
5 1
or Wy = ———
' L,C,
(9.43)
wol, = ;‘ for the shunt arm
& woCH
R e
O o
(9.44)
l_ 2 1. g
R =y
Thus 2,C; = L,C
(9.45)
It can be also verified that
A T— [: = L__lzk-’-’
L &5 <,
(9.46)
ho=\hh
(9.47)

At cut-off frequencies, Z; = - 42,

Multiplying both sides with Z, , we get

2,2, =i=A4Z3 =k*
k
Zy=j—
12

(9.48)

If the load is terminated in a load resistance, R = k, then at lower cut-off frequency




k
Zy, =] — Ly | = j=
2 "[:»,Cz "2] /3

1
w,C,

— oL, =

N | 2=

k
1= 0{Cy L, = w,C, By

From Eq.9.44,
Dl = -
7 . z O..IE?,
2
(.l.)l k -
! T 8 TS
mf'; 2‘”1 2
2
1 —[“ﬁ"] = k7f,C,
o -
C, = 1 l_[i]
= s 2 = =
katf, Jo
Since Jo = NS>
kar _fl fz
NN
k| i/
(9.49)
From Eq.9.44,
wj = —
1‘-2(-‘2
JAa 1 5 wkf, />
- - T 2 - -
Wy wo (/> — f1)
Since Jo = N2
Ly = & 2
4'“'(]’-2 — _f] )
(9.50)

Also from Eq. 9.46,




VG ool

kZ_ LI . [Q

A:HQ=£[
w

(9.51)

SNy ]
N/

L,
andl, Cy- =5
k

(9.52)

1

~ ank(f, — f,)

Z4
Pass
\ Attenuation Pass
2 fo ""/?:ff
— a4z,
Fig.9.32

The variation of reactances with respect to frequency is shown in Fig.9.32. Equation 9.49 through

Eq.9.52 is the design equations of a prototype band elimination filter. The variation of o, with

respect to frequency is shown in Fig.9.33 .
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Fig.9.33

Example 9.6.

Design a band elimination filter having a design impedance of 600 Q and cut-off frequencies
fi=2kHz and f,=6 kHz.

Solution. (f> — f1) = 4 kHz

Making use of the Eqs.9.49 through 9.52 in Section 9.10, we have




L.:!c- fo=f)_ _600x4000 _ .
w| Lofi % 2000 x 6000

C = : - 1 = 0.033 pF
amtk(f, — f;)  4xwx600(4000)

SEAN 1 800
amk(fy — f;)  4mw(4000)

e Ll 1 et W Pt 4000 ]:0.176;;1:

kw| fifs | 600xw[2000x6000

Each of the two series arms of the constant &, 7-section filter is given by

&:31.5mH
2

2C, = 0.066 pF
And the shunt arm elements of the network are
L, = 12mH and C, = 0.176 wF
For the constant 4, 1r-section filter the elements of the series arm are
L, =63 mH, C, = 0.033 pF

and the elements of the shunt arms are

2L, = 24 mH and % = 0.088 uF




