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CHAPTER -1

MATRICES

Minor — Minor is the determinate value which is obtained by deleting row & coloumn of the
particular element and denoted by the symbol ........ , I-rows j-coloum.

€2 1 3u
4 54

Ex:é u

M 1 j=1—18 ~_17
21— 6

32:4

M |2 j=l6—12=4

Upper triangular Matrix — A matrix is said to be upper triangular if the elements
below the main diagoned are zeros.

él 590
e i
Ex. éO 3 7
60 0 8
é i

Elementary transformations : — The following operations three of which refer to rows
are known as elementary transformations.

I The interchange of any two rows (Rij)
Il.  The multiplication of any row by a non-zero scalar (kRi)

I1l.  The addition of a constant multiple of the elements of any row to the corresponding
elements of any other row (Ri + kR])

Equivalent matrix — Two matrices A and B are said to be equivalent if one can be obtained
from the other by a sequence of elementary transformations.

Rank of a matrix : A matrix is said to be of rank ‘r’ if
(i) It has atleast one non-zero minor of order ‘r’
(i) Every minor of order higher than ‘r’ varishes.
The rank of a matrix A shall be denoted by the symbol e(A).
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Working Rule :
Step—1 : Conver the matrix to the upper triangular form.
Step — Il : The no.of non-zero rows is the rank of the matrix
Example -1 :
€% -1 2y
Find the rank of the matrix 62 4’
g -3 120
é a
Solution :
€3 -1 2u
e a
A= -6 2 4
e-3 1 2d
é a
€3 -l2u
é a
~ ¢° 0 8 ®R +2R
-3 1 20 2 1
é a
€3 -1 2ué
a
~ 80 0 8
800 40
€ U - R3+R1
€3 -1 2ué
a
~ ¢% 0 8
800 0u
g 0> 2R3 R
r(A) =2

Consistency : A system of equatiars are said to be consistent if either they will have unique
solution on many solution and sid to be inconsistent if they will have no solution.

2x+3y =38 X+2y=5 x—y =10
X—2y=4 2x +4y =10 3x-3y=15
(unique solution) (many soluion) (No solution)

Consistency of a system of linear equations : -
Consider a system of m linear equations

AL XLt AR X2t e, tatxxn =ht
a );(H+a22x 2+ """" +ta ZX :bz!f

b
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Containing the n unknows x , X......X .

12 n
Writing the above equations in matrix form we get.
a
gail a2 ... in | .
ga a.... a u ’
E 21 22 2n u bz
A B, ua,B=
E , :
.......................... 1] :
¢ a bm
éa a ... a 1
€ m m2 mn U
C= [A B]
gall a12 @l N biu
—_8a a ... - b
C e a21 22 2n zuu
é a

gaml am 2 ...... amn ... bm 0
A is the co-efficient matrix and
C is called agumented matrix
Rouche’s Theorem : (Without proof)

The system of equations (1) is consistant if and only if the co-efficient matrix A and the

augmented matrix C are of some rank otherwise the system is inconsistent.
Procedure to test the consistency of a system of equations in x unknows.

Find the ranks of the co-efficient matrix A and the augmented matrix ‘C’ by reducing to

the upper triangular form by elementary row operations.

(a) Consistant equations : If Rank A = Rank C

(1) Unique solution Rank A=Rank C=n

Where n = number of unknowns.

(i)  Infinite solution : Rank A=Rank C=r.r<n.

(b) Inconstant equations if Rank A * Rank C
Example -2 :

Show that the equations

2x+6y=—-11,6 x+ 20y — 62 =— 3, 6y — 18z = — 1 are not consistant.
Solution :

Writing the above equations in matrix form

62 6 0 U éxue-11U

é U éa ¢

¢® 20 60 ¢Yu e-3 0, AX=B
60 6 -180 ézuUe-1 0

e 0000 €0 & a

A B
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2.6 0uU %-110
_ .o 230

A=62 60 B=

60 6 -1810 g-14q
g ( é

C=[A:B]

u

. (D

e

2 6 0:1
C:AG 20 -6 : -3

€06 -18:-1

>

O S o PO

€2 6 0 :-11u
~ &0 2 -6 :30u
6 u

€ 3 2

€000: 910 ®R -3R
Therank of C is 3
and rank of A'is 2
Rank A1 Rank C.
\ The system of equations are not consistant
Example -3 :
Test consistency and solve :
Sx+3y+7z=4
3x +2by +22 =9
7x+2y+10z=5
Solution :
Writing the above equations in matrix form
. €537 0 éxu é4Q
é u éua éa
€3 2b 2 aevae% ,  AX=B,C=[A:B]
_éé? 2 10 luJ é_ézﬂu éS_éuﬂ
A X B
¢ 3 7 40~
3 7 14 els 5 -

C=¢ 3 272,84 ??%1%%53 + 9

e 1]

w

rD>‘|‘>_"(D\
|
w
|oo o]
oo oo

1® R 2-3R1

!
o

@D: » (DD >
1

Lol
|_\

Cheo

-
N o
-
1
Q= m‘,‘:‘ gl ~

o
7|

1
oglw o

1®R 3-7R1

o O

2 6 0:11
02 6:30

o CN

®R2>—-3R1
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é 3 7 40
11— -
¢ 5 5 oo
¢ 121 11 33d
¢ 5 5 B
9 0 0 0 ¢ 1
8 060 ®R3 +— Rz
8 a 11

Here Rank of A = Rank of C.

Hence the equations are consistent.

But the rank is less than 3 i.e. the number of unknows.
So its solutions are infinite

§ 3 7 U é4 |
a1 = —u B= 1
: 5  5géxy 85y
bl gk i 83
¢ Vg 5060785
é uéza & 0
0 0 006 4 &0
¢ U g0
§ a B0

3 7 4
X+_y+ =

5 5 5
1_21y-1_12=i30r11y—z:3
555

Letz=k, 1ly—-k=3ory= _3 .k

11 11
363 ku 7 4 -16 7
X+——+—+k=—0F X=—KkK+—
5811 110 5 5 11 11

Example -4 :
Determine the values of | & m so that the following equations have
(i) no solution (ii) a unique solution (iii) infinite number of solutions.
X+y+z=6,x+2y+32=10,x+2y+1z=m

Solution :
Writing the above equations in matrix form we have

@1 1 16 #x6 ®60
¢ ¢+ ¢ -
cl 2 3¢+ = ¢lo+

+ ¢+ ¢ +

‘ O

22 219 €29 ﬂg
A X B
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\ AX=B
C=[A:B]
e1 11 - 6u é1 1 1 6 U
C=2¢8 o ~é a
Ry 3:10:.] 20 1 2 4 ®Rz-R1
el 3 | :mag €01 I-1 : m-60
é a é 0®Rz -R1
el 1 1 6 U
2] ]
= e0 1 2 . 4 u
€0 0 1-3: m-lOl]—)Rs—Rz
é a

(i) There is no, solution=b r(A) t r(C)
ie.1-3=00r1=3&m-10 t0 ormt10

(i) There is a unique solution if r(A) =r(C) =3
i.e., I-310or1t3and mhave any value

(iii) There are infinite solution of r(A) =r(C) =2
I-3=100orlI=3and m-10=0o0or m=10

Assignments
el 230
é a
1. Find the rank of the matrix ¢ 2 4 7
63 6100
2. Test the consistency & solve
4x-5y+z2=2
Xx+y-22=9
X+4y+z=5

3. Determine the values of a & b for which the system of
equations3x —2y+z="b
5x -8y +9z=3
2x+y+az=-1
(i) has a unique solution (ii) has no solution (iii) has infinite solution.

rrr




COMPLEX NUMBERS
INTRODUCTION

We have the lmowledge of integers, fractions and irrational number (all these constitute real mumbers).
But if we try to solve the equation x2 + 1 = 0, we observe that these numbers are not adequate. Trving

to solve this equation, we arrive at x2=-lie g=-1.

Square of a positive real number is positive and that of a negative real is also positive. So there is no
real mumber whose square is negative. So we are to create a new kind of number. We define the square

4 root of a negative number as imaginary number’ parffcularly —] = 1, the basic imaginary number.

Then v—4 =21, +2 = i??andsnun.
Imaginary numbers :

Taking 1= ~~1,we observe that

i2=_1
f=—1i=4
t=1
Since  t=li=f=f==___ =i = | where n is an integer.

L=if=ilo=jlé= —j4n=2
PeiT=ill=ili= = =3
#oifojl2=jlé= —jén

COMPLEX NUMBERS

The numbers of the form a + ib where a and b are real numbers and 1 = -1,/ are known as complex
mumbers.

In complex number z = a+ b, the real numbers a and b are respectively kmow as real and imaginary
parts of z and we write :
Re(zi=aandIm(z)=b

Thus the set C of all complex mumbers is given bv C = {z:z=a~+1ib, wherea b= R}
Purely real and purely imaginary numbers :

A complex number z is said to be

(1) Purelv real, if Im (z)=10

(1) Purely imaginary, if Re () =0

Thus, 2, -7, «/3 etc are 2l purely rezl numbers.
While2i, i3 ‘_IJ i etc are purely imaginary.
Conjugate of a c';ﬂgpmv number:

The conjugate of a complex number 'z, denoted by 7 is the complex number obtained by changing the
sign of ima__ginaﬂ-‘ part of 2.

e 0751 —p-3 A3sil-G-5),

Gi=—6i-— 2 =2i
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Modulus of a complexnumber : Ifz=x + iy be a complex number, the modulus ofz, wrtten as |z | is

] =]
arealmumberyx* +y* .

For z=3+4i |z|=13% +4
Alzo | Z=|z].
Ifz=x+iy, Z=x-1y .

5 5 ] 5 5
Zl= = +v | ZE=EARS +{-v) =\vxl + v

v
SUM DIFFERENCE AND PRODUCT OF COMPLEX NUMBERS

For any complex munber

z1={(a+ib) andz;=(c +id)

we define

Wz+rzmp=(a+ib)+(crid)=[a+ec)+ib+d]

(i) z1—z2=(a +ib) —(c +id) = [(a— c) + i (b — )]

(i) zjzz=1(a +ib)c +id) = [[ac —bd)+ 1 {ad+ bc)]
CUEE ROOTS OF UNITY

Let: ] = x, then

® = ljor cubing both sides)

BExi-1=10 Px -l isz=11=0
Px-1=0 or xl+x+1=0

-1x,/1-4
Px=1 or x= hd
1
143
Ex=1 or n= 1—1\. 3
2
. The cube mots of mity a= 1, -l Iy 3.5.11{1_1_]‘3
2 2

Clearly one of the cube roots ofunity is real andthe othertwo are complex.

— 1 4 - . "

Example—1: Expressin the forma + ib

1+5 (1+i)
() 2-3i (i) 3-i I
345 (3+35) 2 +3) §+10i+2i+15 ©+191 -9
Sol* :(i) 2-31 =(2-3) 2 +3) = 4-0i = 13 =13
Lo (L+iF _geileligiel_6i-2i8_gi+2 13
(1) : — Y — = e T..T
i—-1 La-1)ia+a) 01 10 = 5 :|1.

Evample - 2: Find the value of i'" +#! -1
Soff ;7 + 0 M= e il i= @R it -G F
=-DE+ -1 fi=i+1-i=1
Example—3 : If 1, w, w? are the cube roots of unity prove that
(@) @-w) @- w)(A- wh(a- w)=9
Sol™:LHS (1— wi(1— whH(1- wH(l- w)
=(1-w){l - wH(l - w . w(l- wwd
=(1-w)i{l-whH{l-wi(l-wh
=(I-wP (- wy=[1-w(1-w)f

3
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=[(1-w-w+wWP=02- w- wi
= (2+1Y=3=0
Txample—4 : Find square roots of
(a) 3+ 4i
iol"s(a) LetxveRx+tiv=s3+ 44
xl-yl+tiZxy=3+4i
Equatingreal and imaginary parts
xl-yl=3andlxv=4
(2 P = (=2 -y D + dxly= 25

Hencex+y2=1+ 5 Butsince x2+ v2 iz non-negative, we have

XxrTye= >
7
X‘—}"=3
2
Ix-=8

Assignment

1. Ifw be the cuberoots ofunity, then prove
that(1 —w+w )7+ (1 + w+ wd) = 128
2 Find squareroots of -3+ 12+-1




CHAPTER -2

LINEAR DIFFERENTIAL EQUATIONS

Introduction :

The Mathematical formulation of many problems in science, Engineering and
Econom-ics gives rise to differential Equations.

For example : The problem of motion of a satellite

I The flow of fluids.

I The flow of current in an electric circuit

I The growth of population

I The Conduction of heat in rod etc leads to differential equations
Definition of Differential Equation :

A differential equation is an equation involving derivatives of one or more
dependent variables with respect to one or more independent variables.

There are two types of Differential Equation
1. Ordinary differential Equation
2. Partial differential Equation

Example :

@ ﬂ-i‘y:x2
dx

3 2
(b) U+3U +2gy+y:0
dx3  dx®  dx
u &fu 6
€ — +e— =+ =4
ft efto
Linear differential Equation :

Linear differential Equations are those in which the dependent variable and its
deriva-tives occur only in the first degree and are not multiplied together.

The differential Equation of the form

d"y ot oz
dxn+k1—dxn_y1+kzaxn_¥ ++kny=X ... (1)
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Is known as linear differential Equation with constant coefficients. Where k , k..........

are constant, X is the function of x.
There are two types of linear differential Equation
1. Homogeneous LDE
2. Non Homogeneous LDE
Homogeneous Linear Differential Equation :
If RHS of Equation (1) is Equal to zero then we get homogeneous LDE.
d"y (ot y ey

ie dx" +klaxn,1+kzaxn,2+ ...... +kny=0

Where f (x) is the function of ‘x’
The general solution format of Equation (1) of the form (C.S=C.F +P.I)
Where C.S. — Complete Solution
C.F — Complementary function
P.I— Particular integral
So complete solution of Equation becomes (y = C.F + P.I)
Note - 1: In case of Homogeneous LDE
C.S = C.F [where P.I = 0]
Note - 2 : In case of Non-Homogeneous LDE
CS=C.F+P.l
Operator :
d d? d? 2
Denoting — =~ = ... byD, D, D etc.
dy ax dx2 " dxs

Sothat =Dy

Where D-Derivative
1
Then D - Integration
Then operator form of equation (1) becomes
D"y+ KiD™ ! y+ koD 2y + ........ + Kny = X
b (D"+kiD"™! +koD"2 +......... + kn)y = X

PF(D)y=X... (2)
Where F (D) =D"+ kD" + Kk Dos +........ + k of function D
1 2

n
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Auxiliary Equation (AE)
Putting the coefficient of y equal to Zero in Equation (2) we get an Auxiliary Equation.
i.e. F(D)=0
i.e. D"+ kiD" ! + koD"? + ....... +kn=0

Depending value of ‘D’ in Auxiliary Equation, complementary function are
different types.

Case - | : If roots are real & Different
Let m1 & m2 are two real roots and different
i.e. my1m2
Then C.F = Ciemaix + C2ema2x
Where C1, C2, arearbitrary constant
Case - Il :If roots are real & Equal
Let m1 & m2 are two real roots & Equal
i.e mi=m2
The C.F = (C; + C,x) emyx
Similarly if m1 = m2 = m3 (Three roots are Equal)
Then C.F = (C1 + C2x + C3x?) e™X
Case - 11 : If roots are Complex conjugate
Let m; = a = ib are conjugate complex root
Then C.F = e {Cicoshx + Casinbx}
Case - IV : If two conjugate complex roots are equal
Let m1 = m2 = a £ ib are equal
Then C.F = e® {C1 + C2x) cosbx + (C3+ Cax) sinbx
Example-1:

Solve dzy -8d +15y=0 1)
15y =0

Solution :
The operator from of equation (1) becomes
(D*-8D+15)y=0
So Auxiliary Equation

D2 8D+15=0
b (D-3)(D-5)=0
b D=35

Then C.F = C e + C >

1 2

So complete Solution

y=C e+ Ce™ (Ans)
2

1
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Example -2 :

Solve ﬂ —69Y+9y=0
dx®  dx

Solution :

The operator from of given equation is

(D’-6D+9)y=0

Then A.E D?>-6D+9=0

p (D-3)’=0

p D=3,3

CF=(C +Cx)e3x

Then C.S y (C +Cx)e¥ (Ans)
Example -3 : 2

Solve (D*+4D +5)y=0
Solution :

SoA.E  D*+4D+5=0
—4+J16-4.15

2.1

J_
:—4+ _4

D=

2
_ A2,

1
Then C.F=e 2*{C Cosx+C Slnx}
SoCSy=e?*{C Cosx +C Slnx} (Ans)

N

Procedure to finding partlcular Integral.
We know that F (D) y = X

p y:_x

F (D)
Depending upon nature of ‘X’, Particular integral are different
types Case —1 : When X = e®*

Cax
ThenP.I= F (a )whereD=a

XEe provided F¢ (a) 1 0
F'(a)

If F(a) =0, ThenPl =

X 2€ax

If F¢ (a) =0, Then Pl ”( ) pro\/'ded F2 (a) 10
And so on.
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Case — 2 : Whex X =sin (ax + b) or Cos (ax + b)

sin (ax+b)
Then P1 = _C pyp?=-a?
F D?
ButnotD=- a
Sin (ax +b)

- F( -a) provided F (-2 0
If F (— a%) = 0, The above rule Fails & We proceed further

xsin(ax +b)

ieP.l = re(-a2) | Provided F¢ (- 89 0
Sin (ax +b)

If F¢ (- a%) = 0, Then P.I = x? ( ) . Provided F2(— %) 10

F ¢¢ -a2

And so on

Case — 3 : When X = e®v, Where v = function of < x

ThenPl = %Y)
F D

— aX

CF(o+a)’

[N

Similary when X = ¢~ &

ThenPl=¢ & ( 1 Jv

FD+a

\'

Case —4 : When X = x™ (ie, X, X2, x3 )
= X 1m

Then PI O={F(D)] x

Convert F (D) into {1 + F(D)} or {1 — F(D)} by taking D™
(if possible). Then by using Binomial Theorom we find solution.
Case —5 : When X = xv

Then P.I ="
F(D)
T ( Jiv
I FeD U
=1ix y——o Where F¢ (D) is the Derivative of F (D)

i b
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Case — 6 : When x = is any other function

X
ThenP.I= F(D)
Convert F (D) into (D — a) or (D + a) factor form

X X

Then if= D—o =e® 0% dx if= D—o =e 20X i
Example -4 :

Find P. I of (D% + 6D +3) y = e

Solution :
P.l = L putD =a
D? +6D+3
ie.D=2
Thenp.l. = &
(2?2 +6(2)+3
_ e2x :e2x (AnS)
4+12+3 19
Example -5 :

Solvedi—?adz_y+4ygl—2y=eX+cosx
dx3®  dx? dx
Solution :
The operator form of given equation becomes
(D°—3D 2+ 4D -2) y = e* + cosx
So AE D3*-3D?+4D-2=0
PD-11%i
PD=1,1#i
CF=Ce*+e*{C Cosx+C Sinx}
1 eX2+ COS X 3
D?-3D* +4D-2

Then Pl =

ex COoS X

= (D-1)(D2- 2D +2) + D® —3D? +4D-2

e COS X
=D-11-2+2 + -1D-3 -1+4D-2

13
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Gk +cotx
"D-1 3D+1

W&+ cosx (3D-1)
3D +1)(3D -1
( 3D )c(os X —)
= Xex + ( )
cos X

9D2 -1

3sin x COS x

R
1

1 )
=Xex +- =xex + (3sin x + cos X)

- 9-110
1
S0 C.Sy=C1eX+eX{C2cosx + C3sinx) + x X+ 10 (3 sinx + cosx}
Example -6 :
Find the P.1. of (D3 + 1) y = €* cosx + sin3x
Solution:

P =& cosX+sin3x
D? +1

=e*  cosx  + sin3x
D+1 +1 p2pyg

X COS X . sin 3x
-D®+3D?+3D+ 2 -9.D+1

=e COS X +sin 3x
D® +3D? +3D+2 1-9D

=" cot X +sin 3x

~D+3(-1)+3D+2 1-9D

o) C )

cosx2D+1 sin3x1+9D
=e 2D-12D +1+ 1-9D 1+ 9D

C ) ) C X )

:ex2D(cosx)+cosx+sin3x+9D(sin3x)
4D% -1 1- 81D?

= x —2 Sin X+ €0S X 4 Sin 3 X + 27 cos 3x

S D11 -si(-9)

_ & (2.sin x —cos x )+ 1 (sin3x+27cos3x)  (Ans)
5 730
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Example -7 :
dy 2
Solve  _+9y=xcosx
dx?
Solution :

The operator form is (D? + 9) y = X cosx
So AE D?+9=0
b D?%=—9

b D= -9
b D=+3i

C.F =C; cos3x + C, sin3x

Now P.I = X COs X

D? +9
Here F (D) =D?+9
F¢ (D) = 2D

Thenpi=!, EY Vs,
; .
T p
i 2 D U cos x
=ix- ——y—=— put D =1
T D +9pD 49
i 2 D {icos x
ZiX- —7—y
T D +9p-1+9

2
XCOSX D (cosx)
= 8 _g(D.+9)

=X CO0S X +2sin X
8 88

=X CO0S X +SiN X = 4 X €OS X + Sin X
8 32 32

S0C.Sy=Ccosx+C sin3x +-4Xcos X+ sinx (Ans)
1 3 2 32

Example -8 :
2
dy
Solve +4y=x?
dx?
Solution :

The operation form given equation becomes
(D*+4) y=x?

15




16

SoAE. D;+4=0

b D%=4
D= /-4
b D=2

C.F = C4c082x + C,sin2x

X2

ThenP.l= & D%6,

4¢1+ =X

e 49
la D2g?t
=l+—+ x
4 49
1i D2 D2 U
St - s VX
41 4 16 b
11 D2 y,\ D {i
it ()
47 4 16 b
1i, 2 1]
= ix -—% oy
47 4 b
112x2-10 2x%1
:_i y:
417 2 p 8

¢ -1

SoC.Sy=C 1Cost+C sir212x+ .
Other Method for finding P. I :

Method of variation of Parameters :

This method is applies to equations of the form

y*+ py¢ + qy = X

Where p, q & x are function of x.

ThenP. I = | —Yol2Xdery oYX o
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(Ans)

Where y1 & y2 are the solution of y?2 + py¢ + qy = 0 of the form = c1y1 + c2y2 &w

is called wronskian of y1 & y2

Y1 y2
Yooy

Calculate by formulaw (y1, y2) —
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Example -9 :
dy 2
Solve  _+y=cosecx
dx?
Solution :

The operator form of given equation is
(D? +1) = Cosecx
SOAED?+1=0
b D=1
PD= J-1=0#i
C.F. = C; cosx + Casinx
Here y; = cosSX y, = sinx

COS X sinX
—sin X  COS X

W(y.y)

12

= cos?X + sin’x = 1

Sin X. COS ecx Sinx. cos ecx
ThenP.I :—cosfo 1 dx+sinx0 1 dx
1 1

=-00s x Osin x. sinx dx+ sinx Ocos x sin X dx

=—cos x Odx+sinx Ocot x dx
= —cosx (X) + sinx In sinx
S0 C.Sy=Cj cosx + C, sinx + sinx Insinx — x cosx (Ans.)

Partial Differential Equation

Let z=f (x, y) be a function containing two independent variable x & y and z is
the Dependent variable.

Notation : Let z = f (x, y) be a function of x & y

0z 0z
Then ox=p oy =q

ox? oy

22 _s

oxoy

Formation of Partial differential Equation
A partial differential equation can be formed by
() Eliminating arbitrary constant.
(it) Eliminating arbitrary function.

17
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Example —10:
Form a partial different equation by eliminating function
Z=f(x*+y? ..(1)

Solution :

Differentiating partially w.r.t. x & y in equation (1) we get

0
92— ( x2+y? ).2x (taking y as a constant)

OX
P p=f¢(x*+y?).2x ..(2)
Similarly g=f¢ (x> +y?.2y  ...(3)

p f'(x2+y2 ).2x
Dividing (2) & (3) we get q =f'(x”+y? )2y
p =
Xay
P py-gx=0 (Ans.)
Linear Equation of the First order :
A Linear partial differential equation of the 1st order is of the form
Pp+Qg=R
Where P, Q & R are function of x, y, z.
This equation also known as Lagrange’s Linear equation
NOTE :
The general solution of the liner partial differential equation Pp + Qq =R is
f (a,b)=0
Or a = f(b)
Orb=1f(a)

Where f is an arbitrary function & u (x, y, z) =a & v (X, y, z) = b form the solution of
the equation

dx =dy =dz

P Q R
Then that can be solved by two methods
(1) Method for Grouping
(2) Method for Multipliers

Method or grouping :
Take any two fraction from Subsidiary Equation such that the 3" variable is absent or it
may be cancelled.
dx = dy

For example take P a(such that z may be absent)
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After Integration we get f (x, y) =a
dy =dz

Similarly wetake Q

After Integationf (y,z) =D

So general solution is a = f (b)

or b="f(a)
or f(a,b)=0

Method for Multipliers

Let us choose the multiplier’s (P ¢, Q¢, R¢) such

That PP¢ + QQ¢ + RR¢ =0

Then we write P¢dx + Q¢dy + R¢dz =0

On Integration we get f (X, y, z) = a

Similarly choosing the multipliers (P2, Q2, R?) such that

PP2+QQ2+RR2=0

On Integration we getg (X, y,z) = b

So general solutionisa = f(b) or f(a,b) =0
Example—-11:

Solve y?zp + z2xq = y*x
Solution:

Itis of the form Pp+ Qg =R

Where P = yZZ, Q - ZZX, R = y2X
Soits S.E-0X _dY _dZ

2
yz zx yX

Taking 1%t and 3" fraction, we get

dx _dy (Here 3" variable y? is cancelled)

2 2
yz yXx
p  xdx=zdx

Integrating both sides we get 0 xdx = O zdz

b x* =z% +c¢
2

P x*-z%=2c=a

Similarly taking 2" and 3™

i.e.dZ%
I°X  yox

~o

b yidy = 7%z

19
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Integrating both sides we get

D y3 — Z3 + C
.
b y3-z3=3cl=b
So general solution inx? —z 2= f(y® —z 9) (Ans.)
Example —12:
Solvex (Z2-yd) p+y(X+yd) q=z=(y°—X)
Solution :
It is the equation of the form
Pp+Qgq=R
Where P=x (z2-y?) Q=y(X*-z?)R=z (y*-x)
dx dy dz

Soits S.Eis X(ZZ-VZ) :Y(XZ-ZZ) :Z(VZ-XZ)
Let us choose multipliers (x,y, z) i.,e P¢ =x, Q¢ =y, R¢
=z Suchthat x.x (22 -y ?) +y.y (x* =z 2 + 2.z (y* - x?)
= X222 X2+ Y2~y 2% 4 AP 7 22
=0
Then we write xdx + ydy + zdz =0

On integration we set

X4y +Z2=¢
2 2 2
bx2+y?+2z2=2c=a
11 16 1 1 1
Again choose the multipliers ¢ - —— TieP2=_,Q*= —, R? =_
ex y 19 X y z

1 1
Such that-xx (22-y2)+ yw(x2-22 )+ "z (y?-2)

=22 _y2+x2 724y _x2=0
1 1 1
Then X dx+ y dy+ Zdz=0
On integration we get
logx + logy + logz = logb
P log (xyz) = logb
P xyz=b

So general solution in x2 + y2 + z22=f (xyz)  (Ans)
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Solve the followings :
1. 4%y 30y _10y-get*
dx®  dx
2. yt¢+ 3y¢ + 2y = 4 cos?x
3. ﬂ—zdy +y=x %
dx? dx
4. (D?+a?)y =kcos (ax + b)
5. (D-2)2%=8(e*+sin2x)

Assignment
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CHAPTER -3

LAPLACE TRANSFORMS

GAMMA FUNCTION::

The grmma function is defined as

F(n)=08e " x™dx,n>0 (1)

It defines a function of n for positive values of n.

Value of G (1) :

We have,
(1) _ ~e*x%x  =e-xdx |ex#_ 1
F = = __ 0 =
0o o
Hence, G(1) =1 ..(2)

Reduction formula for G (n) :

We have,

r(n+1)= (\)oe‘xx " dx [Integrating by parts]
—l-x"e *|p®+n 0¢°e ~*x "ldx = 0 + nG(n)

\G(n +1) = n G(n), ...(3)
which is the reducation formula for G(n).
Using the reduction formula for G(n), we can write the value of G(n) in the form,

Thus (1) and (4) together give a complete definition of G(n) defined for all values of n
except when n is zero or a negative integer and its graph is as shown in the following
figure.
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4 13 -

VALUE OF G(n) IN TERMS OF FACTORIAL
Using G(n + 1) = nG(n) successively, we get
G(2)=G(1+1)=1x G(1)=1!
G(3)=G(2+1)=2x G(2)=2x1=2!
G(4)=G(3+1)=3x G(3)=3x2!=3!
In general G(n + 1) = nl., provided n is a positive integer.
Taking n =0, it defines 0! = G(1) =1
Thus, G(n + 1) = n! (forn=0,1,2,3... ) ...(5)

Value of G % .

We have,

210 w0 -x U2
Ge—=7 e X *[Put x =y so that dx = 2ydy]

829 O 2
=200 ¢ = 12 dy , Which is also = 200™ e ~ " dx

¢ @100 NS
\aG, ~ =l =400 00 © dxdy [Putx=rcosqandy=rsinqg]
g e2gd
n/2 o 2 poo —r2 é& 1 _rzﬁﬂw
=4 e "rdrdg=4x — e rdr=2p=a¢ — @ U =p

0o 00 200 ge 2 al o
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®l1l0
Hence G(; —a" \/E =1.772 (6)
€29
Example-1:

®36 &50 @*16
G(}_+XG(}_+XGG —_
Evaluate, g2g @&2p €20

G(4).G(6).G(8)

Solution :

®306 @50 @®lo
Gg—+><G(; :XGQ -
Wehave, &2g ¢2g @29

G(4).G(6).G(8)

gl 0 ®3 0 1 &l 3 &30
G¢™ +1+xGg¢— +1+X‘/E —xGQ—+x—xGQ—+X\F‘_
e2 [’} e2 [’} 2 &2 2 €29
= G(3+1).G(5+1).G(7 +1) = 315171
el 0 3 gl0
Jp3Ge_ +1+'\/B — pGo_*
_ 82 g _2 &9  3pp
4315171 4315171 = 8.3L5L7!
= pp =pp
161.51.7! 9676800
Example -2 :
Evaluate G(-3.5)
Solution:
G(n+1)
We know that,G(nm)=

n
For all n expect n is zero or a negative integer.
Now, we have,

G(35) —G(35+1) _G(-25) _ G(25+1) _ G(-L5)
-3.5 35 (-35)(-25) (3.5)(25)

_ G(-1.5 +1) _ G(-0.5) _ G(-0.5 +1)
(3.5)(2.5)(-1.5) (3.5 (2.5)(-1.5) (3.5 (2.5)( -1.5)(-0.5)

_ G5 _ Jp - 0.27
(35) (25)(L5)(0.5)  (35) (2.5)(L5)(05)

\G (-3.5)=0.27
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Laplace transforms :

Definition :
Let f (t) be a function of t defined for all positive values of t. Then the Laplace
transforms of f(t), denoted by L {f(t)} is defined by

L{F(t)} = O¢e Hf(t)dt
Provided that the integral exists. s is a parameter which may be a real or complex number.

L{f(t)} being clearly a function of s is briefly written as f (s) .
ie, L{f(} =1(s).

This implies that, f(t) = L1 {f(s)}

Then f(t) is called the inverse Laplace transform of f (s) .

The symbol L, which transforms f(t) into f (), is called the Laplace transformation operator.
CONDITIONS FOR THE EXISTENCE :

The Laplace transform of f(t) i.e., C)o e Sty (t)dt exists for s> a, if
(1) f () is continuous
and (ii) limey {e @ Lf(t)} is finite.
TRANSFORMS OF ELEMENTARY FUNCTIONS :
The direct application of the definition gives the following formulae :
1

1) L{1}= s(s>0)

in!
o isa ,whenn=0,1,223,.....
@ Wh=i |
iG(n+ ) , otherwise (s > 0)
T s
1
() L{e"}=5-a (s> a)

a
4) L{sinat}= s2+a? (s>0)

s
(5) L{cosat}= s?-a? (s> 0)

a
6) L{sinhat}= s?2-a? (s>]al)
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S
(7) L{coshat}= s?-a% (s>[a])

PROOFS :

Sn+1

L, 1
=s5,ifs>0

-@-st

S

oo —Sst

(1) L{13=0e .ldt=

0

0

0 n

0" ¢ odt=0e_,&po dp
@ L{t t=0e ¢ —=. —, on putting st = p
0 €sg S

0

:sn+1 oe_ppndp

G0+ ifns> _1ands >0

n!
If n is a positive integer, G(n + 1) = nl. Therefore, L{t "} = g, ifs>0

© © —(s-a)
(3) Le®31=0e Te®d=0e " Vdt=ot= }67
0 0 -(s-a)

e-st [ a
(-ssinat-acos at)

0

0

0

4) L{sinat} = Oe ' sinatdt =

52+ g’

0 o S ta
*© e—st 1° s
) L{cosat}=0e™ cosatdt= |55 (-scosat+asinat)| =——— ,ifs>0
0 s't+a b S +a
o st L qmed.gdly
(6) L{sinhat}=0° sinh at dt = Qe ¢ +dt
0o € 2 @
éoo —-(s-a)t wo—(s+a)t U 1é 1 1 l] a
=—80e dt -Oe dtu=—¢e - = —5——= ,fors>|a]
0 0 Ltj 2$s-a s+al g -g
st oo st aea +e_a 0 :|-e30 -(s-a)t w —(s+a)t L]
(7)  L{coshat}=0° coshatdt =0e ¢~ +dt =—¢éo°® dt + Oe dta
0 g 2 9 2¢, 0 1]
1é1 1 u s
=—8 0= », for s> |a|
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PROPERTIES OF LAPLACE TRANSFORMS :

1. LINEARITY PROPERTY :
If a, b, ¢ be any constants and f, g, h any functions of t,

then L{af (t) + bg(t) — ch(t) } = aL {f(t)} + bL {g(t)} — cL

{h(t)} By definition,

L.H.S = Oe S [af (t) +bg (t) —ch (t)] dt

0 0 0

—aOe stf(t)dt+bOe-g(t)dt—c Oe = h(t)dt

0 0 0

=aL {f()} + bL {g(V} - cL{h()}
Il.  FIRST SHIFTING PROPERTY :

If L {f(t)} =f (5) , then

L{e® f()} =f(s—a)
By definition,

Le@f(t)}=0e e f@)d=0e (52)¢(t )t
0

0
o

= 0 ™F(t)dt, wherer=s- a= F(r)= F(s—a).

0

APPLICATION OF FIRST SHIFTING PROPERTY :

1
M) Het=s-a
n!
2 L{e*t"}= (s — a)rr whenn=1,23,.
b
3)  L{e*sinbt}= (s — @)+ b2
s—a
4  L{e*cosbt}= (s — a)2— b
b
G) L{e*sinhbt}= (s — a)2— be
s—a

6) L{e*coshbt}= (s — @) —
2 where in each case > a.
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I1l. CHANGE OF SCALE PROPERTY :

If L {f ()} = f(s), then
1_ &s0
L{f(at)}= — '¢ —~.
a eag
By definition,

L{f(at)}= Oe *tf(at)dt

© du
-su/a dU
N [putat =udt= a
Oe f(u) a
0
®s0
1 17
:a—oe—su/af(u):a— éaﬂ

Example-3:
Find the Laplace transform of e2! (3t° — cos4t).
Solution:
L{e?'(3t° — cos 4t)}
= 3L{e? t%} - L{ ecos 4t}
51! §-2 360 s-2

=3x - - -
(s-2)8 (5-22%+4%> () 52 4s + 20
Example -4 :
Find the laplace transform of et sin? 3t
Solution :
We have
1 161 s u 18 3
L{sin®3t}= — L {1 —cos 6t} =—é— 0= — =f(5s)
2 286s s +6 0 (s +36)
Example -5 :
Find the laplace transform of e 3! sin 5t sin 3t.
Solution :
1
We have, L{sin 5t sin 3t} = 2 L{cos2t — cos8t}
s s U 30s —
=f(9) .

1l¢
=t ) U = 7

28s +2 s +8 0 (s +4)(s +64)
By first shifting property, we get
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L{e sin5tsin 3t}=f (s+3
30(s+3) _30(s +3)
[(s+3) 2+4}{(s+3)2 +64) {s? +65 +13}{s 2 +6s + 73}

Example -6 :

Find the laplace transform of e 2t (2 t-3/ t)

Solution :
We have
®1 0 ®&-1 O
[} [N Gg¢™ +1+ G(;_+:|.+
L{2t-3/t} =2Lit2y-3Lit 2y=2_¢2 8.3 &2 o
J_ \/_ h ; ) ] -
52 52
el 0 el 0
2695 s G‘92?+ P 3 P f(s)
- e /] e = —— - = S
N 3x , \/_i S
2s 2 2V g2

By first shifting property, we get
e 2 (2rt-314 )=t (s +2)

e e
(s+2), +s+2 (s+2)s+2 [s+2

Example - 7 :
isinat i isinti el s

Fndli  ———y ,giventhat Li —y =tan ¢—-
T tp T tp €Sy
Solution :

isinat i 1210 -~

Given that, L y=L{f@y= & t—2=1(5)

i th esg

By change of scale property, we get
I
isinatt 1 —s6 1 -1 1 0 1 .za0

L{f@} = ‘i y =— f¢—+ ="tan f y=—tan ¢—+
fat p a éag a i(s/a)p a €Sg
1 isinati 1 _zab
_Liiy B ¢ -
a T tp aes 2
isin at U ka0
Therefore, L7 y=tan ¢— -

[ t p es g
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LAPLACE TRANSFORMS OF DERIVATIVES :

(1) f¢ (t) be continuous and L{f(t)} = f_(s) , then L{f ¢(t))} =sf (s) -f (0) .
Proof : We have

L{fe(t)} = 00 e Stfet)dt

=le " (t) [P0 -0 & (s)e . f(t)dt

Now assuming f(t) be such that limete¥ =St f(t) = 0, we have
L{fe(t)}=-f(0) +s O™ e f(t)dt

Thus, L{ f ¢(t)} =sf-f (0)
(2) If f ¢ (t) and its first (n— 1) derivatives be continuous, then

L{F" (O} =s" f(s)-s" 17 (0)-s" 2 ¢(0) -....... .. -1 (0)
Thus,

L{ f2(t)} =s?f(s) - sf (0) - f ¢(0)
L{ f2¢(t)} =s3f(s) - s f (0) - sf ¢(0) - f2(0)

L{FV(t)r=s4f(s)-s3f(0)-s 2f¢(0) - sf20) - f 2¢(0)
and so on.
Laplace transforms of integrals :

_ it i 1_
If L{f(t)}=  f(s) thenLid fu)duy= — f(s)
‘o 1S
T b
Proof :
+, T(u)du
Letft)= 0 ()

0

, then fe(t) =f (t)and f(0) = 0

\ L{fe(t)r=s f(s)-f(0)

or L{f ()} =sf(s)
or f_(s) = s?( S)

or _f(s)=—1T(s)
S

Hence, L {(‘)ot f(u)dU}= 1sf(s).
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Multiplication By t" :
If L{f(t)} = f () , then

L{O O} = (-1)" S ef(s)u, where n=1,2,3.........

DivisionBy t :
If  L{f(®)}=f(s),then
il U e
Li—=f()y o, ") provided the integral exists.
Tt b
Example -8 :
Find the laplace transforms of
(1) tsinat
(2) tcos at
Solution:
a
(1) Wehave, L {sinat}=s?+a® )
d® a é u
- . 2as
\L {tsinat} = C 2 2% =-¢2 22l

dses +a g (s +a ) @
2as
Hence {t sin at} = (5% + a® )?

S

(2) We have, L{cos at} = §2+ a2

\L tcosat }:-Q e S 0=fs?+a’-2s0
I ¢ 2 2 + &~ 2 22
dses+a g é(s +a) @
s2.52
Hence, L {t cos at} =——
(Sz + az )2

Example -9 :

Find the laplace transforms of t cos at.
Solution :

S

We have, L {cos at} = 2122

d?¢ s 0

\L{tzcosat}=(-1)%2— a
2 2

2

ds és +a
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o

éa?-s20ds

€, u.
a(s2+a2)2" g

=-2s(s®+a?)?-2(a%-s5%).2s(s%+a?%)
(82+a2)4

=-2s(s%?+a?)+4s(s?-a%)=2s(s?-3a%)

(52+a2)3 (s2+a?)?
Example —10:
(e—at - @bt )
Find the laplace transforms of -
t
Solution :
1 1

—at -bt -

Wehave,L{e —e }= (s+a) (stbh)

e ®.eMyg ¢ 1 10
\Lf y= & ads
) R
7 t b «é(s+a) (s+b)U
= élog(s+a) -log (s +b)u~
s
2s+adl” s(L+als)u”
=lgg — U0 =log— ¢
es +hals s(L+b/s)ds
®s+ad
=logl-log ¢ -
es+bg
®&s+ad ®S+ho
=-logg T % =lggTF
gs+ho gs+ag
Example—-11:

®e® -coshto
Find the inverse Laplace transform of ¢ ——— =+

e t 1]
Solution :
ie® -cosbtu .6 1 s 0

Wehave, L1 =y =06 — -——uds

. [ t b sés-a s +b d

[ ..

'|'(eat-cosht)|u s 1 s
\ L t y:Oe—-mﬂ(jS

Ts és-a

b

u

—_—) =
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:éelog(s-a)- 1 g (s +bz)ﬂu°°

é 2 Us
1/
="€ 2log (s-a) log ( sz+b: v~
7 €.
1 . s-a ou”

= —log ¢—=7——=+
2 és +b  als

: 6u
=1 glogl-log (;ae <s.af+u
28 ¢S +b
é e gl

:-_1 Iog(;$(s-a)2 0;

2 ¢S Ly
e )
1 és2+p’
== logé——=q.
2 és+b 0
INVERSE LAPLACE TRANSFORMS :
We know that if {f ()} = f(s), then L2 { f (s)} = f ()
Let us now determine the inverse Laplace transforms of some given function of s.

4110
@ Li-y=1
isp
—1\| 1 U at
@ Li—y=¢
is-ap
—1\|1U tn—l
@B Liwy="",n=123 .
is p (n-1)!
| 1 0 eafn
@ O Y= eltl,n:lZ?; ..............
T(S-a) b (n-1)!
411 0 1
() Li—7——zy=—sinat
s +a p a
411 0
(6) Li—z——=zy=cosat
is +ap

@ 1 U=lgjnhat
Li—7——=2y —
s -a p a
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(®) 1! =cosh at
Li—= 7Y
is -a p
11 1 U 1 a
9) Li————=2——=y=—e sinbt
i(s-a) +b p b
i s-a  U_ a
) =e” cos bt
I'—z—zy

T\s- b
|(S a) +ub1

4l S
(11) L i—7——=7y= —tsinat
(s +ta) b 2a
2 1 0=1 (sinat-atcosat)
Li 7 rawa's 3

i(s +ta) p 2a
INVERSE LAPLACE TRANSFORMS BY THE METHOD OF PARTIAL FRACTIONS :
We have seen that L{f (t)} in many cases, is a rational algebraic function of s. Hence to
find the inverse laplace transforms of f (s) , we first express the given function of s into partial
fractions which will, then, be recognizable as one of the above mentioned standard forms.

Example —12:

2

S+s+2

Find the inverse laplace transform of (s+1)%(s-3) .

Solution:
Suppose that,

s2+s+2 = A + B + C

(s+1)2(s-3) (s+1) (s+1)? (s-3)
Multiplying both sides of (1) by (s + 1)? (s — 3), we
gets?+s+2=A(s+1)(s—-3)+B(s-3)+C(s+ ..(2
1) 2 Putting s = -1

(1)

2= 48 PB=-"
2
Putting s =3
.
14=16CbC= 8

Equating co-efficient of s?, we get

1
1=A+CPA=1-C bA=8
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Putting the values of A, B, C in (1) we get

s?+s+2 _1, 1 .1 1 .7 1
(s+1)%(s-3) 8 (s+1) 2 (s+1)? 8(s-3)

41 s?+s+2
WL i———

i(s+1) (s- 9
1 50 10 1 41 1 6 7 41 14
=Ty L eyt iy

Tls+1 “(s+1 8 A(_

§|(1)bz7| ) b \s-3)p
=—e-t = et + est
828

Example — 13 :
S
Find the inverse laplace transforms of (s-2) (s + 9)
Solution :
Suppose that,
S A Bs+C
2 - + 2
(s-2)(s +9) s-2 s+9
Multiplying both sides by (s — 2) (s 2 + 9), we get
S=A(s?>+9)+(Bs+C)(s—2) .(2)
2
Puttings=2,2 =13AP A= 13

(1)

9
Puttings=0,0=9A-2cbC= 13
Equating co-efficient of s?, we get
0=A+BpPB= - 2_
13
Putting the values of A, B, C in (1), we get
) :_2 X 1 -_2)( S +§ X 1
(s-2)(s%+9) 135-213(52+9)13(s?+9)

1] S u
WL i——————y

T(s-2)(s+ 9) b
2 411 40 2 i S a 9 i 1

=—L i—y-—L i— yt—L i ——y
13 1s-2p 13 1(s +9p 13 s +9p
2 2 3

=_62t-_ cos3t+ sin3t.

131313
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OTHER METHODS OF FINDING INVERSE LAPLACE TRANSFORMS :
() SHIFTING PROPERTY :
IfLL{f(x)}=f(t), then
L1{f(s— a)}=edf@) =Lt {f (5}
() 1L {F (s)}=f(t) and f (0) =0, then L-1 {s. F (5)} - d f(t).
dt

Ingeneral, L-1 {s "f(s)} = dtn {f ()},
Provided f (0)=f ¢ (0) = ... ... ... =f"1 () =0.
_ 5 '.'33_)%': Oo' f (t )t
IFL |4t ()} = f (t), then L if
i
(V) 1FLL {£()}=f(t), thent.f@)=L L 1-d ¢ U
T d Op
if (t)u =
V) IFF@=L" {fE)}thenli yit p Of(s)ds .

This formula is useful in finding f (t) when f_(s) IS given.

Example - 14 :
®206
Find the inverse Laplace transform of tan-1 ¢ —
£s g
Solution :
1 e200
LetL? (& ¢ —y =f(t)
T ésap
220 _
b L{f®}=tanlc—==7(s)
es g
Then by formula IV we get,
d — dé a2 0U
L{t. f()}=- —¢f(s)o=-—ctan ¢ =0
ds dsé es gl

é 1 U é-20
:-ee(—zua.é—zu
81 +2/s Ués
2
=5’ +4
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P2
b tf () = L1 =sin 2t

S
is +4p
sin 2t
b f)= ——
t
\ Rl @200 :sin 2t
7 esap t
Example — 16 :
®s0
Find the inverse Laplace transform of log ¢ — .
es+lg
Solution :
i &s ou
Let Lt 1199 — iy Zf('[)
T és+lgp
&S0 _
P L{f()}=logg —==f(5s)
gs+le

Then by formula IV we get,

-4 ¢Joga_s_ 6l =0 ¢logs-log (s+10
L{tf@)}= ¢ [+ =0 f
dsé és+lel ds

1 1o 1 1

=-8 - 1 -
s s+10 s+l s
pti=L? L Lo
is+l sp
b f(t)=e'1
t
b o.soon (81
\ Lll’log(; <y = !
T es+lgp t
Example - 17 :

1

Find the inverse Laplace transform of s: (52 + az) :
Solution :
We have

y
iy a

L-1 ‘ 1 q:i sinat = f (t).
|
T b
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Then by Formula 111 we get,

i 1] st
- i il- i 1 obinat dt = - i cosatu 1-cosat
Li y — o a o
iS(s? +a)i a a b a
i b
Thus we have,
i 1]
Loty 1 i =1 tl-cosat dt
'|'i52(52+az)'|'y a O ( )
T p
16 1 0}
=—7est- —sinaty
aé a o
16 1 Ut
=—7Zet- —sinaty
aé a o

= 1_(at-sin at).
as
Example - 18 :

1
Find the inverse Laplace transform of [V
S 2s+5
Solution :
71" l U _5t
We have, - ——y=¢ :f(t)
is+5p
Then by Formula Il1, we get
i1 0 1,
i — = —  él.est Udt
i's (s +5)‘|‘y 5008 a
i p
L i 1 u t dt:'le 0t :'1ée€‘ . '1&0:1éel'e s Ug
is(s+5) i 5 0 5 5
i p
Thus we have,
i 1 a 1
L f————— T — 61-e7Stadt
|sz(s+5)y'|' 500¢ a
i p
16 1 -5t U
:—p‘ +—e adt
5é 5 a
16 1 U
=—e¢'+"e

5 5 o
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:lé Lo 1o
5¢ 5 50

=16 g-at 4 5¢ .10

25e {

Example —19:

s2

Find the inverse Laplace transform of ~—
( S2 + a2 )2

Solution :
We have,
i 2 U
1§y S i, .
Ly =—tsinat=f(t)
)b
iS2+a® i 2a

Since (0) =0, we get from Formula Il that,

i 2 U i U
o S ” .. S 1 d A N
L1i 23S ¥ - J 6 (1)
¢ttt | T A .
i sZval o dté @

i( 39 O

~dé 1 u
- —é— tsinatg
dté2a a

1 .
= ~ (sinat + at cos at).
2a

Example -20:
s+3

Find the inverse Laplace transform of (Sz +6s +13)2

Solution :

We have s+3 - s+3 —  s+3
L + + e(s Cesea)e sl : &(se 3)+

s 6s 13 6 N ;U

Then by formula I we get

i U i u I 1
T s+3 )1/ -L -1IJ' S+3 T 3t -1 1 S T
) - ‘ (S 3 J 2 Z Y =
L ( ) b [ ) ); ¢ Il( ;)b/
i s2+65+13 i s o i Ps? 422
1

=3 tsin2t.




Engineering Mathematics — 111

Example — 21 :

S
Find the inverse Laplace transform of -

(Sz + az )2

Solution :

! S

! !
Let, f()=L1 i ) CE— y

7 ) b

i s2+a®

Then by formula V we get

iy c__s 172
LI’_)'/C)S f_(S)dS: 0Os 2 , ds= 0s 2 2 2ds
Ttp S +a) 2 (s +a )
U
l¢ 1 =
=-—é> Al
2és +a U
1 1
:-2,(Sz+az)

f(t) SR
I Y] i o
\ t =2L i(s:+a )iy =2a.sinat
T p
i U
Hencef(ty=, % __ 1 T-1 tsinat
ist+a i 2a

LAPLACE TRANSFORM METHOD TO SOLVE LINEAR DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS ASSOCIATED WITH INITIAL
CONDITIONS :

Linear differential equations with constant coefficients associated with initial conditions
can be easily solved by Laplace transform method.

Working Procedure :

Step-1: Take the Laplace transform of both sides of the differential equation and then put
the given initial conditions.

Step-2: Transpose the terms with minus signs to the right.

Step-3: Divide by the co-efficient of |, getting y as a known function of s.
Step-5: Resolve this function of s into partial fractions.

Step—5: Take the inverse Laplace transform of both sides. This gives y as a function of t
which is the desired solution satisfying the given conditions.
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Example — 22 :
Solve the following equation by transform method;
y2—3y ¢ + 2y = e3 when y (0) = 1 and y¢(0) = 0.
Solution :
We have, y2— 3y ¢ +2y = e3t (1)
Taking Laplace transform of both sides of (1), we get
L {y?} =3L {y¢} +2L {y} = L {e*}
1
P [°y ~sy(0)-y ¢(0)]-3[sy —y(@)]+2y =53
Putting y (0) = 1 and y¢ (0) = 0, we get
1
Sy-s-35y +3+2 y = 3

1+ (s-3)?
P y.(s2 —3s+2)= +s-3 =7 3
s2-65+10
b y-=
(s-3)(s -3s+2)
~ s2-65+10
P y=T ()
§s-3 s-15s-2
s?2 —6s+10 A B C
Let,( ) y = + +

s-3 s—l)(s—z s-3 s-1 s-2

Multiplying both sides of (3) by (s —3) (s — 1) (s — 2), we get

s2-65+10=A(s-1)(s—2) +B(s=3) (s—2) +C (s—3) (s-1)
5

Puttings=1,B = 2

Puttings=2,C=-2
1

Puttings =3, A= 2

Substituting the values of A, B, C in (3), we get

1 1 5 1 1
y:’z, S-3 +2.5-1 -2..5-2
C )y )

Taking inverse Laplace transform of both sides, we get
a1 41 10 5 41 10 4l 10

L{y}= — Li—y +— Li——y -2Li—y
2 1s-3p 2 1is-1p is-2p
\yzle_3t+§et_262t
22

This is the required solution.

(2

(4
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Example — 23 :

Solve the following equation by transform method;

(D*+w?) y = cos wt, t> 0, giventhaty=0and Dy=0att=0
Solution :

We have

(D? +w?) y = cos wt

i.e., y2 + w?y = cos wt, giveny (0) = y¢(0) =0

Taking Laplace transform of both sides of (1), we get

L {y2} + w?L{y} = L {cos wt}
P Sty —sy(0)-y ¢0)+w2y :?es—z

+ 0

Putting (0) =0 and y¢ (0) =0, we get

— (2)

(s+0)

Taking inverse Laplace transform, we get
s

|_,1{ y}l_*1 = ( S+ M2 )2
1

\y= 2@. tsin wt
This is the required solution.

Assignment

1. Find the Laplace transforms of the following :

RI U Rt U

| sint| | -t

|
y (@ sz \% (b) LSz® cos t dtV
Lro w Lro

2. Find the LaEIQace Transform of f(t) in each of the following :

sin2t,when O0<t<n 1, when 0<t<2
(@ ftty=S @ ft)=S

0, whent>n Tt, whent>2

3. Obtain the inverse Laplace transforms ofthe following functions
252 — 65 +5 b a(s2 - 232 )
@ 3 6s2+11-6 b ~ e
S F 1+s |
c (d) log ¢ )
S2 + 65 +13 H s K

rrr
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CHAPTER -4

FOURIER SERIES

Periodic Functions :

If the value of each ordinate f(t) repeat it self at equal interval in the abscissa, then f(t) is
said to be a periodic function.

Iff)=f{t+T)=Ff(t+2T)=....., then
T is called period of the function f (t).
For example

sinx =sin (x + 2p) =sin (x + 4p) =......
So sin x is called a periodic function of period 2p

nf(t)
1
i F o™
/ r ."‘\. 'f h ot
G —n\¥ / 4] \JT r;?n
¥ hY
w A
T 5

Founier Series :
A series of sines and cosines of an angle and its multiple of the form

80 +a coSX+acoS2 X+....+acosnx+ ...
2 1 2 n

+bysinx+basin2 x+...... +bnsinnx +.....

© ©

0 0
= + dan cos nx +abn sin nx
ao

2 n=1 n=1
is called a fouries series, there ao, an & bn are called fourier
constants Useful Integrals
The following integrals are usful in Fourier series :

o+ 21 o+ 21

1. Oa sinnxdx=0 2. ba cosnxdx=0
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3. 06% % sin® nxdx = p 4. 06" 2% cos® nxdx = p

5. 0o 2 "sinnx.sinmxdx =0 6. 0s®" 2" cos nx. cos mxdx =0

by

O . sinnx. cos mxdx =0

7 ot 2 8. 0u™" 2 sin nx. cos nxdx = 0

0. 0UV=UV1-U¢V2+U2V3- ...........
du d?u
wherevi = Ovdx,vo = Ovide,vs = Ovadk ut= dx, 2= d &
10. sinnp=0 & cosnp =(—x) wherenT1
Let f(x) be represented in the interval (a, a + 2p) by fourier series

© ©

f(x)=2+ da , cos nx +aby sin nx (1)
2 x1=1 x1=1
To find & :
Integrate both sides of equation (1) form x=atox =1+ 2p. Then
o+ 27 1 ot 27 at+2n & 0] at2n ® o 0]
N d by o < 0
Ou f(x)dx=— 10, dx+0u ¢ 82, cosnx ~dx 0, ¢ dbnsin nx +dx
2 1 én:l 1] én:l 7]
= a.o(a+2p-a)+0+0:aop
2
ot+2m
Henceay =~ f(x) dx

To find an : Muliply cos nx an both sides of equation (1) and integrate from x =2tox =2

+ 2R, Then
27 1 a+ 2w a+2n & o]
f(x)cos nxdx =— ao cos nxdx + ¢ & €05 X+ cosnxdx
O- 2 O(x O(x En-1 (4]
a+r2n & o . 0]
+1 sin
O« ¢ Zoibn MX'. connxdx = 0 + pan+0
én:l )
1 oat+2m
an+— f(x) cos nxdx

To find bn : Multiply sin nx on both sides of equation (1) and intergrate
fromx=ptox=p+ 2p, then

a+2n a 2+m
\ — 0
Oo f(x)sinnxdx= , , sinnxdx +
at2n & o 0 w2r®  w 0

o

0. ¢ &2, cos nx =sin nxdx +0u ¢ Abasinnx +sinnxdx = 0 + 0 + pbn
En-1 7] En-1 7]
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o+ 21
=

Hence by = f (x ) sin nxdx

Making a = 0, the interval becomes 0 < x < p and the formula (1) reduces to

=t % fx)k U
0 o Ip
\ (i
an = 00°™f(x)cosnxdx (i1
P b
1
b == %

f (x) sin nxdx
n

Putting a= — p, The interval becomes — p < x < p, the formula (I)
reduces to

.
do :pf)—n f(X)dX i
1. |
=50 f(x)cosnxdxy ....(iii)

i
1 7 f(x) sin nxdx i
pofn b

a

n

b

n

Euler’s Formula :

The fourier series for the function f(x) in the interval p < x < p + 2p is given by

0 0

a 3 Q.
f(x)= — +d an cos nx +dbn sin nx

2 n=1 n=1
oat+2m

where ag =~ f (x)dx

1 o+ 2

T o

a = nf(x)cosnxdx

o+ 21
bn = f (x) sin nxdx

The value of ao, an & bn are known.
Euler’s formula.

Example-1:

1 1 1

—=1l+—+—7+—=+
6 2 3 4

Given that f(x) = x + x2 for — p < x < p, find the Fourier expansion of f(x). Hence that
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Solution :
) __&0
Letx + x“= 2+611005X+a20082x+ .....
+b1 sin x + ba2sin2x + ...... (1)
1. 1, 16x2 % U
a0 =— f(x)dx= — (x+x2)dx = —e—+—
po_ﬂ pofn pe 3U—n
Lép> p o pll 2p?
=t - +—— (| =—
3 N
. pe2 3 2° U 3
a =_ " f(x) cosnxdx = _T[ (X +x?) cos nxdx
n P "
16 , sinnx (-cosnx)  a&-sinnxou”
=7e(x+X ) -(2x+1) Z +2¢ T+l
pé X Xe X@0-x
l¢ cos np cos(- np)u
= ¢(2pey —z—-(2p+) ——=— ¢
pé X nd
1¢ cosnpu 4.(-1)"
=— sdpx T0= 7
pé xQ X
1
bn=p O (x +x2)sin nxdx
5T
1¢é 2 - COSNX &-sinnxp T_COSTXU i
.. R s A VR
pé i Xg
1é 2 COS NX ®Cosnx o 2C0S NX 2cosnpu
:—r(—p—-p—p—)* -2Xg 3 =+ _p+p J h 3 P
. ; X x 0
pé 1é-2 Xe \ X2IZJ
= p.cosnpu=-_(-1)
ppf R
é an
Substituting the values of ao, an & bn is equation (1)
2 pl é 1 -1
X+X =— +4gcosx+ —C0S2X—7C0S3X+...
3 @& 2 3
é 1 1 u
-2¢-sinx + —sin2p- - siN3 X +....q (2)
8 2 3 a

Put x = pin equation (2)
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2

PP ¢ 1 1 1
p+p =— + 44 +—— +— +— +...0 (3)
3 g 2 3 4 a

Put x = — p in equation (2)
pP ¢ 1 1 1 U
—p+pi= —H+ 4t 7+ 04
3 e 2 3 4 a
Adding equation (3) & (4)

298 6 1 1 1

2p = +8el+ —3+ 2 7T 4.
3 g€ 2 3 4 a
4 6 1 11 i
T = 8+ 7+ T2 o+
3 g 2 3 4 A
P 11 1 1
o}
— =14 o4 5 + o+ =d 2
6 2 3 4 n-1

Dirchelet’s Condition :

0 ©

. . . a2 g, .
Any function f(x) can be developed as a fourier series2 + Qan cos nx +abn sin nx
2 n=1 n=1

where ao, an, bn are constants provided.

(1) f(x)is periodic, single valued and finite

(it) f(x) has a finite no.of discontinuities in any one period
(iii) f(x) has at most a finite no.of maxima and minima.

Discontinuous Functions : At a point of discontinuty, Fourier series gives the value of
f(x) as the arithmetic mean of left and right limits.

At a point of discontinuty, x = ¢
f(x):_1 [f(c-0)+f(c+
0)] 2
Example -2 :
Find the fourier series expansion for

i-p, -p<x<0
0. if T (¥ =g
X, 0<x<p
11 p?
Deduce that T —
1 3 5 8
Solution :

ao %O OOO i
Let f(x)=""+ dan cos nx +dbn sin nx ...(1)
VA X =1 x=1
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1é, n u
then ao = 80, (p)dx + 0o xdxU
p é a
1é 0 :|X2 [,'!”l] 1é p2 u
=pe e 7Y o TPt o=k
g T bpog 8 Q 2
1 éO bs u
% =— 806 (-p)cos nxdx +O x cos nxdxi
pé—n 0 ]
16 isinmx 0% 1 sinnx  cosnx{”
=—¢(-p)xi ——y +ixx +——s—yu
Pé( ) i n Eﬂn i X X pzl a
é s 0
=1°0+LeosnpLU_1 cosnp-1
B 2 20 2 1
pé x nd pn
__'2 — 4
ai=—,,a,=0,a3 = ,a =0
p.3
1¢" : U
bn = 80 (-p). sin nxdx +0 x sin nxdxu
p [ 0 a
leéipcosnxii®  1-x.cosnx sinnxi’
= —i y +i + Y
Per X pe 1 X X o ”
e 01 a
=1ép 1-cos np)- R cosnp " == -2 cos np)
é i 1
péx ( n 0 x
-1 -1
\b1=3, b2="—"",b3 =1,bsa = —
24
Substituting the values of a’s and b’s in equation (1), we get
-p 26 CoOS3X COS 5x t....
f(x)=— -—&COSx+ — t— "
4 pé 3 5
+ -sin2x+ sin3x -
3sin x 3— ... (i)
2 3
Putting x = 0 in equation (ii)
p 2& 1 1 0
fO=-— -—¢l+—s+—=+. ¥+ ..(iii)
4 pe 3 5 o
Now f(x) is discontinuous at x = 0
Butf(0-0)=— pandf(0+0)=0

\f(0) = 1—[f(o-0)+f(o +0)]=:292
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From equation (iii)

-p=p-261 41 +1+,..0
24 p™

e 2523
or P2_1 1 1,
8 1 3 5
Even Function : A function f(x) is said to be even (or symmetric) function if f(— x) =
f(x) Ex. (i) X% , x4, x8,........even powers. of X
(i) cos x , sec x etc.

The graph of such a function is symmetrical with respect to y-axis. Here y-axis is a
mirror for the reflection of the curve

y

Ty,
-

i
-
||
v

The area under such a curve from — p to p is double the area from 0 to p.

s X

VOf(x)dx=2 Of(x)dx

Odd function : A function f(x) is called odd (skew symmetric) function if f(— x) = —
f(x) Ex. (i) x3, x°, X/, .......odd powers if x

(i) sinx, cosex, tanx etc

Af(t)
Ay s
\ /o \‘ /
,‘1._;! "\L_,;
X ¢

Here the area under the curve from -p to p is zero

i.e., Of(x)dx=0
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Expansion of an Even Function :

L ’ f(x)dx=2 ’ f(x)dx
a L f(x).cos nxdx:Z
n f (x) cos nxdx
T 0—1[ TT (‘)0
As f(x) and connx both are even, the product of f(x).cosnx is also even.
1 T

bn =; (‘)_nf(x)sinnde:O
As sin nx is an odd function. The product of an even function with odd function is odd.
therefor we need not calculate bn.
The serives of an even function contain cosine terms only.
Expansion of an odd Function :
_1 o _
a ==~ f(x)dx=0

0

1
a = < T(x).cosnxdx=0 Q
no ( f(x).cosnx is odd function)
7 0=
b :% c‘)n_nf(x).sin nx dx = 2 ’ f(x).sin nx dx

n

(Q f(x).sinnx is even function)
The series of an odd function contain sine terms only.
Example -3 :
Obtain a founier expansion of for f(x) = x3. in—p<x<p
Solution :
f(x) = x3 is an odd function.
\ag=0andan=0

2 s 2 T
b == &( x).sinnxdx =2 ®x3 sinnxdx
X
2 €3 -Cos nx 2 -Sin nNx €OoS Nx sinnx u"
=X . -3X. >— + bX. T— - 6. U
peé X X X X Qo
2 é 5 Cosnx cos nx U"
= a-X . + 6X. — U
é X x o
% ’ coS n coS n
="€ - P+ 6.p. pu

280

2] X3 0
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6 . 60
= - -p° +
2.(1)8t o
. 3 A
€ = UxX
p’ 60 z-p’ 60 =P 60
\e=2 eg_:|_+_3+5inx+g— +—+Sin 2x-¢ +t—sin3x + ...
éeé 1) e?2 2 9 e 3 39

Half Range Series :
To obtain a Fourier expansion of a function f(x) for the range (0, p) which is half the
period of the fourier series. As it is immateriad what ever the function many be outside
the range 0 < x < p, we extend the function to cover the range — p < x < p. So that the
new function may be even or odd. The fourier expansion of such function of half the
period consists sine or cosire term only.

Sine Series :
If it is required to expand f(x) as a sine aeries in 0 < x < p me extend the function to the
range — p < x < p, so that if will be an odd function.
The desired half-range sin series is given by

0

f(x)= é.bnsin nx

n=1

where bn = 192 Oo“f(x) sin nxdx

Cosine Series :
If its is required to expand f(x) as a cosine series in 0 < x < p, We extend the function to

the range — p <x < p, so that if will be an even function.
The desired half — range cosine series is given by

o
+ da n Cos nx

n=1

f(x)=

LI S

oA

a
where o= f(x) dx
2 .
an= 7% f(x)cos nxdx
Example -4 :
Find the half - range sine series for the function f(x) = e® for0<x < p
Solution :

©

f(x)= ébnsin nx

n=1

where bn = Jpz Qo™ f (x)sin nxdx = p2 00" e  sin nx dx
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26 Eax u”
=8 — s(asinmsmye
Uo
pea +n
2é ean n l:l
=—§ ——— (asin np - n cos npy+— 0
2.2 90
péa £ a“+n u
=20 4-(-1) "™ +1p
a’+n%e
= 2N g () ey
(a2+n)p a
2(1+e?™)  22(1-¢€%")
b = b =
L (atel)p o (%+2%)p
w 268l+edT 21-e2") Y
e =—é7—sinx+ ———sin2x
péa + 1 a+2 u
Assignment
1.  Find a fourier series torepresentf(x) =p-x,0<x<2p
2. Finda fourier series to represent the function
f(x) =e*, for—p<x<p
i p
i1, for -p<x<- -
.l. p P
3. Find the fourier series of the function ¢ x) = 1o, for - —<x< —
i 2 2
i 0
i1, for <x<p
i 2
t, o<t £ P
4.Represent the following function by a fourier sine series ft)= ', 2
p p
r,
i2 2
1, for 0<x<P
5. Find the fourier cosine series for the function f (x) = ! 2
| P<x<p

rrr
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CHAPTER =5

FINITE DIFFERENCE AND INTERPOLATION

Finite Difference :
Suppose we are given the following values of y = f (x) for a set of values fx :

X X0 X1 Xo...... Xn

Y YO V1 VYo yn

The interpolation is the technique of estimating the value of a function for any
intermediate value of the independent variable. While the process of computing the value of
the function outside the given range is calle extrapolation.

Suppose that the function y = f(x) is tabulated for the equally spaced values x = Xq, Xo +
h, xo + 2h, ....... X0 + nh giving y = yo, V1 ....... yn. To determine the values of f (x) for some
intermediate values of x, the following two types of difference are found useful.

Forward difference - The differences

Dyo=vyi-vyo

Dyi=y2-y1

Dy =y -y
Similarly D?y0 = Dy1 - Dyo

D31 =D?%1 — D?y1
D"yo=D"1y1— D" yo
Forward difference table

Value of x | Value ofy | 1stdiff. | 2nd diff. | 3rd diff. 4th diff. 5th diff.
X0 Yo Dyo
X +h y Dy D%
0 1 1 0
X + 2h y Dy D% D3
0 2 2 1 0
X +3h y Dy D% D3y D%
0 3 3 2 1 0
X + 4h y Dy DYy D3y DYy D%
0 4 4 3 2 1 0
X0 + 5h Y5
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Backward difference

Ny1=y1— yo
Ny1=y1— yo

Ny = R yn - Ny g
Backward difference table

Value of x | Value of y | 1st diff. 2nd diff. | 3rd diff. 4th diff. 5th diff.
X y
0 0 D yo _
X +h y Dy D%y
) 1 1 o 7
X +2h y Dy D4y D3y
0 2 2 . 1 . 0
X +3h y Dy D%y Dy D%
0 3 3 2 1 0
X +4h y Dy D%y D3y D% D%
0 4 4 3 2 1 0
X0 + 5h Y5
itf f | l

We know that the expression of the form f(x) = aox" +a2x" "1 +...... +an-1 X + an where a’s are
constant (ap * 0) and n is a positive integer is called a polynomial in x of degree n.
Theorem:

The 1%t difference is a polynomial of degree n is of degree n — 1, the 2 nd difference is of
degree n— 2, and the nth difference is constant. While higher difference are equal to zero.

The converse of the theorem is alos true which stated that if nt" difference of a function
tabulated at equally spaced intervals are constant, the function is a polynomial of degree n.

Example-1:
Form the successive forward differences of ax?, the interval being h.
Solution :
Herey=f (x) = ax®
We know that
Dyo =y1 -y o= f(x+h)-f(x)
\D (ax®) = a(x—h) ®—ax®
=a (x® + 3x%h + 3gh? + h%) — ax®
= a (3x%h + 3xh? + h®)
Again, D%y = Dy1 — Dyo
\D?(ax®) =a {3 (x + h)2 h + 3(x + h)h? + h®} — a (3x%h + 3xh? + h3)
= a {3x%h + 6xh? + 3h% + 3xh? + 3h% + h® — 3 x°h — 3 xh? — h 3} = a {6xh? + 6h3}
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D30 = D%y1 = D%y
\D3 (ax®) = a {6(x + h) h? + 6h®} — a {6xh? + 6h%}
= a {6xh? + 6h3 + 6h3 — 6 xh? — 6h 3} = 6ah® = Constant

\D*@ax®) =6ah®-6ah®=0
Here it shows that the the third differences of a polynomial of third degree is constant &
the higher difference & are zero.

Factorial Notation

A product of the formx(x — 1) (x —2) ........ (x—r+ 1) isdevoted by [ x]" and is called a
factorial.

In particular
[X]=x[x]2=x(x-1)
[XP=x(x-1) (x-2)
XI"=x(x-1)(x-2)....... (x=n+1)
which is called a factorial polynomial or function.
The factorial notation is of special utility in the theory of first differences. It helps in
finding the successive differences of a polynomials directly by simply rule of
differentiation. The result of differentiating [x]" is similar to that of differential x".
Example -2 :
Estimate the missing term in the following table :
X 0 1 2 3 4

f) | 1| 3| 9| 8| 1

Solution :
Let the missing term by yi. The following is the difference table.

X y D D? Ds D4

0 1

1 3 2 4 y3—19

2 9 6 y3-15 124 -4y 4
y

3 3 y3—-9 81-2y3+9 105 -3y 3

4 81 8l-vy3

As only four entries yo, y1, y2, y4 are given, the function y can be represented by a third
degree polynomial, here 4™ order difference becomes zero, i.e.,

124 -4y ;=0
P y3=31
Hence the missing term is 31.
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Example -3 :
Estimate the missing term in the following table :
X 0 1 2 3 4 5 6
y 5 11 22 40 -- 140 --
Solution :

Let the missing term by y, & ys. The following is the difference table.

X: oy D D: Ds D Ds

0 5

1 11 6 5

2 22 11 7 2 y4—67

3 40 18 y4—40 y4-58 303 -4y, 370 -5y 4

4 \Z! y4—40 180 -3y 4 238 -3y 4 y6+6ys— yg+ 10y, — 1001
5 140 140-y4 Y6 + Y4 — Y+ 3ys— 460 698

Y, y6 — 140 280

As only four entries yo, y1, Y2, y4, y5 are given, the function y can be represented by a
4™ degree polynomial & hence 5t difference becomes zero, i.e.,

370-5y,=0 and y6 + 10y, —1001 =0
Solving these, we get

»

ya=T4 and y6 = 261
, i lation f laf i |
Let the function y = f(x) takes the valuesy, y, y........... corresponding to the values
0 1 2

Xo, X1 + h, Xg + 2h of x.

f(xo+nh)=yo+nDyo+ " (n- 1)D2y0+ n(n-1)(n-2)

213!
Obs. This formula is used for interpolating the values of y near the beginning of a set of
tabulated values and exterpolating values of y a little backward (i.e. to the left) of yj.
Newton’s backward interpolation formula for equal intervals

Let the function y = f(x) takes the valuesy, y, y.......... corresponding to the values
0 1 2

D3yo+....

Xo, X1 + h, Xg + 2h of x.

N +1). + +2) .
f(Xn+nh)=yn+nNyn+n(n 1)N2yo+n(n D(n 2)N3yn+
2131

Obs. This formula is used for interpolating the values of y near the beginning of a set of
tabulated values and exterpolating values of y a little backward (i.e. to the right) of yn.
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Example -4 :

The table gives the distances in nautical miles of the visible horizon for the given
heights in feet above the earth’s surface.

x = height 100 150 200 250 300 350 400
y =distance | 10.63| 13.03| 15.04| 16.81| 18.42| 19.90| 21.27
Find the values of y when (i) x = 218 ft.

Solution :

(i)

(i)

The difference table is as under :

X y D D Ds DY

100 10.63
2.40

150 13.03 ~0.39
2.01 0.15

200 15.04 —0.24 ~0.07
1.77 0.08

250 16.81 ~0.16 ~0.05
1.61 0.03

300 18.42 ~0.13 ~0.01
1.48 0.02

350 19.90 ~011
1.37

400  21.27

If we take xo = 200, then yo = 15.04, Dyo = 1.77, D?yo = —0.16, D3yo = 0.03 etc.

Since x =218 and h = 50, .. n= X~ % _18_o 5

h 50

\ Using Newton’s forward interpolation formula, we get

n(n=1),,, n(n-1(n-2,,

y218 =Yyo+nAyo+ Yo+ .....
1.2 1.2.3
0.36 + (—0.64) 0.36(—0.64)(-1.64)
f(218)=15.04 +036(2.77)+ ______ (-0.16)+ (0.03) +...
26

Since x = 410 is near the end of the table, we use Newton’s backward interpolation formula.

\taking Xn =400, n =X=*n _10_g,
h 50
Using the line of backward differences

Yn =21.27, N?yn = —0.11, N3yn =0.02 etc.
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\ Newton’s backward formula gives

ym:y400+nNy200 A0+ D) {2y 400+ DN* D) (N+2) {34004
2 1.2.3

= 2127 +0.2(1.37) + 2232 (Lo11) 4 =2153 nautical miles.
2

Example-5:

Find the number of men getting wages between Rs. 10 and 15 from the following data :
Wages in Rs.| 0-10 10-20 | 20-30 | 30-40
Frequency 9 30 35 42
Solution :

First we prepare the cumulative frequency table, as follows :
Wages lessthan(x)| 10 | 20 | 30| 40

No.of men (y) 9 39 | 74| 116
Now the difference table is
X y D D2 D3
[9]
20 | 39 [3
35 (b
30 74 7
42
40 116

We shall find y;s i.e. number of men getting wages less than 15.

Taking xo = 10, x =,15, ave
0 S L [ =
nN=__ o = = =05
h 10 10
\ using Newton’s forward interpolation formula, we get

y =y +nDy +n!n'1!D2y +n!n'1!!n'2} D3y
15 10 10 2! 10 3! 10
=9 +(0.5)°30 + (0.5) (0.5-1) ‘54 (0.5)(0.5-1)(0.5-2) - »
2 6
=9+ 15-0.625 + 0.125 = 23.5 = 24 approx.

Number of men getting wages between Rs. 10 and 15 =24 — 10 = 5 approx.
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Example -6 :

Find the cubic polynomial which takes the following values :
X 0 1 2 3
f)| 1] 2| 1| 10

Solution :
The difference table is

X f(x) Df(x) D2(x) D?3(x)
0 1
1
1 2 -2
-1 12
2 1 10
9
3 10
We take x =0and Pox-0 =
: h
\ using Newton’s forward interpolation formula, we get
1 1 2
* oo bl 2O Dyt . DI
0) + D f(0) + D f (0)
1 1.2 1.2.3
ey X XD X (-1 (x-2)
2 6

= 2x3 + 7x% + 6x + 1, which is the required polynomial.

To compute f(4), we take x =3,x=4sothat p=X=Xn =1
" h
Using Newton’s backward interpolation formula, we get

f(4) = f(3) + nNf(3) + LNt L {2 (3)+n(nt1(n+2) &3 £ (3)

1.2 1.2.3
=10+9+10+12+41
which is the same value are that obtained by substituing x = 4 in the cubic polynomial

above.

Obs. The above example shows that if a tabulated function is a polynomial, then interpolation
and extrapolation give the same values.

Lagrange’s Interpolation formula for unequal intervals :
£(%) (x-x)(x-xz) ..... (x-x
= 1 n

)

(x-x1)(X0-X2)....(X0-Xn)
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y = (x—x1)(x—x2)....(x—Xn)

O(Xl—XO)(X1—X2)....(X1—Xn)

S(X=x0)(X=X1)..(X=Xn-1)

(xn=%0) (Xn—=X2) ....(Xn —Xn-1)
Lagrange’s Method for unequally spaced values of x :

Xz(v—vn(v—vz) ........ (v—Vn)+(v—vo)(v—vz) ........ (y—yn)
(Yo =y1) (Yo=¥ 2)nn (yo=yn) (y1-y0)(y1=Y2)eerren (yr—yn)

Cy=yo) (y-ya)e (Y=yn1)
Yo =Y0) (Yn=Y1 ) (Yn=yn-1)

+..

Example -7 :

Use lagrange’s interpolation formula to find the value of y when x = 10, if the following
values of x & y are given.

Solution :

Here | x0=5 X1=6 | x2=9 X3 =11

and | yo=12 | y1=13 | y2=14 | y3 =14

Putting x = 10 and substituting the above value in Lagrange’s formula, we get :

(X=x)(X=X)(x=Xs) (X=X )(X=X2)(X=X3)

f(x)= .
(xo-xt)(xo-x2)(x0-x3)  (xt—x0)(x1—x2)(x1—x3)
_ (X=X )(X =X )(X—X3) (X=X ) (X=X ) (X —X2)
+ y2 + Y3
(x2=x0)(x2-x1)(x2-x3) (x3-%0)(Xx3 —x1)(x3 —x2)

f(10) :_(10 —6) (10 -9) (10 -11) x12 + (10 -5) (10 - 9) (10 -11) x13
— 8)(5-9)(5-11)(6 -5) (6 — 9) (6 —11)(5

+(10-5) (10-6) (10-11) x14 + (10-5) (10-6) (10-9) x16
- 5) (9 - 6) (9 —11)(10 - 5) (11— 6) (11— 9)(9

_ 4x1Ix(=1) w12+ 9xIx(=1) 13
(-1)x(-4) x(=6)  1x(=3) x(-5)

+5x4x(=1) x14 + 5x4x1 x16 —48 + —65 +-280 + 320
4x3x(—2)6x5x 2-24 -15 —-24 60

=2-4.33+11.66 +5.33=14.66
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Example -8 :
Apply lagrange’s method to find the value of x when f(x) = 15 from the given data.
X 5| 6 9 11
f(x) | 12| 13| 14| 16
Solution :
Here
X0= 5, X1 =6, X2=9, x3=11

yo =12, y1 =13, y2 =14, y3=16
Taking y = 15 and using the above results in Lagrange’s inverse interpolation formula.

(y=yi)(y-y2)(y—ys) (Y=Yo)y=-y2)y-Vys)
X=f(X)=(yo—yl)(y0—yz)(>g —y)3><0+ (yl—yo)(yl—y 2)(y1—y2-><1

(Y=Yo)(y=yi)(y-Vy3) (Y=Y )(y=Yy1)(y—Vy2)

x2t X3

(ya-yo)(y2 —y1)(y2-y3) (y3 =yo)(y3—y1)(y3—y2)

— (15-13)1(15 -14) (15-16) x5+(15 ~12)1(15 ~14) (15 -16) <6
(13 -13) (12 —14) (12 -16) (13 -12) (13 —-14) (13 -16)
+(15 - 12)1(15 - 13) (15 -16) x 9 + (15 - 12)1(15 - 13) (15 -14) x11
- 12) (14 — 13) (14 —16)(16 — 12) (16 — 13) (16 —16)(14

= 2x1x(=1) x5+ 3xIx(=1) = x6+_3x2x(-1) x9+_3x2x1 x11

(-1) x(-2) x(-4)  1x(-1) x(-3) 2x1x(-2)  4x3x2
5 27 11
=_ 76+ + =125-6+135+275=175-6=115
424
Assignment
1.  Finda cubic polynomial which takes the following values
X 0 1 2 3
f(x) 1 2 1 10

2. Given the values
X 5 7 11 13 17

y 150 392 1452 2366 5202

Evaluate yg using Lagrange’s formula.
3. Given sin 45° = 0.7071, sin 50° = 0.7660, sin 55° = 0.8192 and sin 60° = 0.8660. Find

sin 52° using Newton’s forward interpolation formula .

rrr
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CHAPTER -6

NUMERICAL SOLUTION OF EQUATION

An expression of the form

f(x) =aox” +awx" ! +..+an—1x+an
where ao, a1, az,........ an 0 are constant and n is a positive integer is called a polynomial
in x of degree n.

The polynomial f(x) = 0

For example (1) 2 +x*-13x+6=0
(2)x*-4x+9=0

are called algebraic equation.

Transcendental equation -

If f(x) is a functions other than algebraic function such as trigonometric, logarithmic,
exponential etc. then f(x) is called transcendental function.

Root of an equation -
The value of x which satisfied f(x) = 0 is called the root of the equation.

Geometrically a root of the equation f(x) =0 & y = 0 is the value of x where the graph
meet the y-axis.

Solution of an equation -

The process of finding a root of an equation is known as the solution of an equation.
Different methods to solve the equations.

(@) Analytical method

(b) Graphical method

(c) Numerical method

Limitation of analytical method

This methods produce very exact and accurate results. But it fails in many cases such as
it fails to find roots of transcendental equation.

Limitation of graphical method -
This methods are simple but these methods produce result to a low degree accuracy.
Advantages of Numerical method —

This methods are often of a repetitive nature. These consist in repeated execution of the
same process. Where each step the result of proceeding step is used. This is known as
iteration process and is repeated till the result is obtained to a desired degree of accuracy.
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The followings are some Numerical methods to find root of algebraic and
transcendental equation —

(1) Bisection method
(2) Newton — Raphson method
Bisection method :
This method consists of locating a root of the equation f(x) = 0 between a and b. If f(x)
is continuous between a and b, and f(a) and f(b) are of opposite signs then there is a root

between a and b. from the graph f(a) is negative and f(b) is positive then there is a root
lies between a and b. The first approximation to the root is

x1=_(a+h)

2
y
F
l
/
ri
£
#
F
a X2 _r" X
0 ‘_j X3 XD
ra
~_ 1

if f (x) = 0, then x; is the root of equation f(x) = 0. Otherwise the root lies between a
and x; or x; and b according to f(x;) is positive or negative. Then we bisect the interval
and continue the process until the root is found to desired accuracy.

In the fig.1 f(x1) is +ve, so the root lies between a and x1. Then the 2nd approximation
_ 1 a X . . _
totherootis x2 == ( + 1).1ff(x)is-ve, theroot lies between y and x . So the third

2 1 1 2

_ _ 1
approximation to the root is xs= _( X1 + X2 ) and so on.
2
Example-1:
(@) Find a root of the equation
x3— 4 x— 9 = 0 using the bisection method correct to three decimal places.
Solution : 2 25 2825 275 3

J(2)y=—ve f25=—ve FQI5- ve [f()=+ve

Let f(x)=x*—4x-9
f(2) = (2)°—4(2) — 9=—9 (~ve)

f(3) = (3)°— 4(3) — 9 =6 (+Vve)
aroot lies between 2 and 3.
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First approximate to the root is
x1=_ (2+3)=25
2
f(x1) = (2.5)° — 4(2.5) — 9 = — 3.375 (~ve)
the root lies between x; and 3. The second approximation to the root is

X2 = 1(x 1+3)= 1 (25+3)=2.75
2 2

f(x2) = (2.75)% — 4(2.75) — 9 = 0.7969 (+Ve)

the root lies between 2.5 and 2.75
1
Soxa= 2 (2.5 +2.75) = 2.625
f (2.625) = (2.625)° — 4 (2.625) — 9 = — 1.4121 (—ve)
the root lies between 2.625 and 2.75.
1
xa= 2 (2.625+ 2.75) = 2.6875
Repeating this process, the successive approximation are
X5 = 2.71875, x6 = 2.70313, x7 = 2.71094, x8 = 2.70703, x9 = 2.70508,
X10 = 2.70605, x11 = 2.70654, x12 = 2.70642. Hence the root is 2.7064.
Example -2 :

Find the root of the equation x log;o X = 1.2 which lies between 2 and 3, using bisection
method taking 2 stages.

Solution :
Let f(x) = x logiox—1.2=2xlog 102 —1.2
=2x.3010-1.2=-0.5979 (-ve)
f(3) =3 x log 10x — 1.2 = 0.2314 (+ve)
the root lies between 2 and 3

1

x1= 2 (2+3) =25

f(2.5) = 2.5 (log102.5) — 1.2 = - 0.205 (—ve)
the root lies between 2.5 and 3

1
X2 =2 (2.5 +3) =2.75
Hence the root is 2.75.
Example -3 :
1

By using the bisection method, find an approximate root of the equation sin x= X, that

lies between x =1 and x = 1.5 (measured in radians). Carry out computations upto the
7th stage.
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Solution.
Let f (x) = x sinx — 1. We know that V = 57.3°
Since f(1)=1xsin(1) —1=sin(57.3° — 1 =-0.15849
and f(1.5) =1.5xsin(1.5) "~ 1 =1.5 x sin (85.95)° ~1 = 0.49625;

aroot lies between 1 and 1.5.
1

\ first approximation to the root is x;= 2 (1 + 1.5) = 1.25.
Then f(x;) = (1.25) sin (1.25) — 1 = 1.25 sin (71.625°) — 1 = 0.18627 andf (1) < 0.
\aroot lies between 1 and x; = 1.25.
1

Thus the second approximation to the root is xo = 2 (1+_1.25) =1.125.
Then f (x2) =1.125 sin (1.125) — 1 = 1.125 sin (64.46)° — 1 = 0.01509 and f(1) < 0.
\aroot lies between 1 and x, — 1.125.

1
Thus the third approximation to the root is x3 = 2 (1_+1.125) =1.0625
Then f (x3) = 1.0625 sin (1.0625) — 1 = 1.0625 sin (60.88) — 1 =—0.0718 <

0 and f (x2) > 0, i.e. now the root lies between x4 = 1.0625 and x2 = 1.125.
1

\ fourth approximation to the root is x, = 2 (1.0625 + 1.125) = 1.09375

Then f(x4) = —0.02836 < 0 and f (x2) > 0,

i.e., the root lies between x4 = 1.09375 and x, = 1.125.
1

\ fifth approximation to the root is xs = 2 (1.09375 + 1.125) = 1.10937

Then f (x5) =—0.00664 <0 and f (x2) > 0.
\ the root lies between xs= 1.10937 and x,= 1.125.
Thus the sixth approximation to the root is

1
x6= 2 (1.10937 +1.125)=1.11719

Then f (x6) = 0.00421 > 0. But f (x5) < 0.
\ the root lies between x5 = 1.10937 and xg = 1.11719.

1

Thus the seventh approximation to the root is x,= 2 (1.10937 + 1.11719) =
1.11328 Hence the desired approximation to the root is 1.11328.
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y

N

W

In this method, instead of taking two initial rough approximations to the root x = a as in
the previous two methods, a single rough approximation X, to the root is taken. Then we use
the following formula, known as Newton-Raphson formula or Newton iteration formula, to
get the successive approximations.

f(xn)
Xn+1=Xn— fl(x) e (1)
Puttingn=10,1,2,..cccccccuernrne. etc. in the above formula (1), we get the first, second, third

approximations as follows.

E
>
o

x1=X0— f1(x)

—
>
—
-

X2 =X1-— fl(xl)

f(x2
x3 =x2— f1(x)
2

This method is useful in cases of large values of f (x) i.e., when the graph of f (x) while
crossing the x-axis is nearly vertical.

The process of finding successive approximations to the root (i.e., X1, Xz, X3 etc.) may be
continued till the root is found to desired degree of accuracy.

Example -4 :
Find by Newton’s method, a root of the equation x® — 3 x + 1= 0 correct to 3 decimal places.
Solution :
Let fx)=x*-3x+1
f()-1-3+1=-1
f(2)=2°-32+1=8-6+1=3
P The root of f (x) lies between1 & 2
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Letx = 1.5, Also f (x) = 3x* -3
0 1

Newton’s formula gives
f(x) (x3—3x +1)
X =X = 1 . =X - 2 .
i on (X)) n 2Xx-3
_3x3-3x -3 343 -1 _2x3 -1
3x% -3 3 -3 (1)

Putting n = 0 in (i), the first approximation x; is given by

3 3 _
" =2x(j 1_ 2><(1.5)Z 1 _2x3375-1 575 _ oo

X —3 3Ix(15) -3 3x225-3 375
Putting n = 1 in (i), the second approximation X, is given by

% 2x13-1  2x (1533 -1 2x3.6026-1  6.2052

=1.532

Z

X -3 3 (1.533)Z -3 3x235-3 4.05
Example-5:
Find the Newton’s method, the real root of the equation 3 x =cos x + 1
Solution:
Let f(x) =3x—cos x—1
f(0)=-2=-ve, f(1) =3-0.5403 -1 =1.4597 + +ve

So aroot of f(x) = 0 lies between 0 and 1. It is nearer to 1. Let us take xo = 0.6.

Also f(x) =3 +sinx
\ Newton’s iteration formula gives
f(x ) :
X =X- " =X —3Xn—C0SXn—-1 =XnsSinXn+COSXn +1
el f(xp) " 3 + sin xn 3+5sin Xn (1)

Putting n = 0, the first approximation x; is given by

X =Xo Sin Xo + cos X0 +1 = (0.6) sin(0.6) + cos(0.6) +1
! 3+5sin X0 3sin (0.6)

- 0.6x 0.5729 + 0.82533 +1 _ 06071

3+0.5729
Putting n = 1 in (i), the second approximation is

X = X1Sin X1 + cos X1 +1 = 0.6071sin(0.6071) + cos(0.6071) +1
2 3+sinx1 3+sin (0.6071)

_ 0.6071x0.57049 + 0.8213 +1 =0.6071 Clearly X =X.

3 +0.57049 ro2
Hence the desired root is 0.6071 correct to four decimal places.




72

Engineering Mathematics — 111

Assignment

1.  Findaroot of the following equations, using the bisection method correct to three
decimal places.

(@ x*- x-11=0
(b) x*-~ x-10=0

2. Find by Newton-Raphson method, a root of the following equations correct to 3 decimal
places.

(@x*-3x+1=0
(0)3x*-9x*+8=0
3. Using Newton-Raphson method to evaluate the following

1
@ 3 (b) 41

rrr
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